Will future processing be impeded by power supply realities?

By Roman Bida, Consultant

Power converters and power supply systems in semiconductor manufacturing equipment affect their performance and the quality of the product. New developments such as the transition to 300mm wafers and ultra shallow junctions stress power source technologies. Common industry practices in the areas of power converters and systems may give rise to complexity-related problems on the tool level and the fabrication facility level.

The economics of the semiconductor industry has required simultaneously reducing the transistor size while increasing the wafer size. Those trends fundamentally conflict from the power system perspective. The reduction of the transistor size requires sources of smaller, but nearly perfect, “gentle” power. When wafer size increases, the demand for power increases. Due to the limitations of the commercially available power conversion technology, the quality of power (whether DC, HV, or RF) is reduced. Deteriorating power quality indirectly impacts the cost of processing, for example, an increase of processing time in crystal growing, yield reduction in applications utilizing plasmas (caused by charge accumulation), and increased process complexity (two step implantation/RTP instead of the low energy implant).

Power converters in semiconductor manufacturing equipment
Power systems in semiconductor manufacturing equipment employ a variety of power conversion equipment in direct current (DC, 1-2000A at 5-500V), high voltage (HV, 0.5-150kV at up to 10kW), radio frequency (RF, up to 10kW), and alternating current (AC) subsystems. The distribution network supplying electrical energy to the power converters typically involves low voltage, single- or three-phase, AC networks.

Read the complete article in a pdf format.

If you would like to see more exclusive features on this topic or if you have another possible topic, please contact:
Julie MacShane, Managing Editor, email: juliem@pennwell.com.


Easily post a comment below using your Linkedin, Twitter, Google or Facebook account. Comments won't automatically be posted to your social media accounts unless you select to share.

Leave a Reply

Your email address will not be published. Required fields are marked *

You may use these HTML tags and attributes: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <s> <strike> <strong>



OEM Group expands P5000 capabilities to compound semiconductor substrates
05/25/2017OEM Group has launched the P5000:CS automated single wafer cluster tool for the compound semiconductor market. ...
3D-Micromac launches the second generation of its high-performance microcell OTF laser systems
04/17/2017The high-performance production solution for Laser Contact Opening (LCO) of PERC solar cells achieves a th...
ULVAC launches NA-1500 dry etching system for 600mm advanced packaging systems
03/24/2017ULVAC, Inc. is pleased to announce the NA-1500 dry etching system for 600mm advanced packaging substrates, providing for u...