Improving Image Quality: Reducing Drift Problems via Automated Data Acquisition and Averaging in a Cs-Corrected TEM

It’s hard enough to optimize image quality – what do you do if the sample won’t stay put? Extended exposure times can’t improve image quality if there is a sample drift problem during TEM image acquisition. Recent experiments show that image quality can be improved significantly by drift correction via automated data acquisition and averaging even for drift conditions. Download this article to read about a successful demonstration on a Cs-corrected TEM where low sample drift is a requirement for high quality data.



Format:
Size: 0.00



To view this White Paper, please log in or register




Register



* Denotes required fields
* Email Address
* Your Password
* Re-Type Your Password
* First Name * Last Name
* Job Title * Company
* Address
Address 2
* City *State/Province
* ZIP Postal Code
* Country
* Phone


Please re-type the text shown below to complete your registration:



By clicking "Submit", you are indicating that you have read and agree with our Terms & Conditions and Privacy Policy.

LIVE NEWS FEED

NEW PRODUCTS

New AFM with high definition electrical measurement capabilities
04/16/2015The Nano-Observer, designed by Concept Scientific Instruments, is ideal for current and future AFM research applications....
Thin wafer processing temporary bonding adhesive film for 3D wafer integration
03/24/2015 AI Technology, Inc (AIT) is the first known provider of a film format high temperature temporary bonding adhesive for thi...
Dramatic results achieved in cleaving glass using ultra-short pulsed lasers
03/11/2015ROFIN-SINAR, Inc. introduces the SmartCleave FI laser process and the MPS glass handling system for high speed and precise cl...