STMicroelectronics and University of Amsterdam Faculty of Science use advanced MEMS to soar with birds

STMicroelectronics and the University of Amsterdam Faculty of Science have announced that a sophisticated bird-tracking system developed by the university is using advanced MEMS sensing technology from ST.

Weighing as little as a 20 euro cent coin or a US quarter and smaller than a car key so as not to impede the birds’ flight, the tracking systems are sophisticated data loggers that can be attached to the back of the birds. The trackers enable valuable scientific research on bird behavior by measuring GPS position every three seconds.

“MEMS technologies are finding their way into a broad range of applications,” said Benedetto Vigna, executive vice president and general manager of ST’s Analog, MEMS and Sensors Group. “The light weight, low power, and high accuracy of the MEMS make it ideal for innovative projects like UvA’s bird tracking system to study avian migration and behavior.”

In addition to the bird’s location, determined via GPS, the tracker collects acceleration and direction data from STMicroelectronics’ LSM303DLM digital compass that integrates low-power, high-performance motion and magnetic sensing in a miniature form factor. The MEMS chip monitors the direction and vertical/horizontal orientation of the animal and can determine the body angle of birds flying in a crosswind.

“Animals have a lot to teach us and, especially as the Earth’s climate changes, there are many projects that we can undertake to study animal behavior and migration patterns,” said Prof. Dr. Ir. Willem Bouten of UvA. “STMicroelectronics is a strong partner for us in developing technologies that are suitable and adaptable to researching challenging problems that could help us address the effects of global warming and land use change.”

The tracker also contains sensors that measure both the air temperature and the internal temperature of the device. A lithium battery, charged by a high-efficient triple-junction solar cell, provides power to the system, and a ZigBee transceiver manages wireless data communication to and from the device.

Data from the trackers is currently being shared among bird-research institutes and biologists to verify computer models that predict bird behavior and migration patterns.

The bird tracking system was developed in a close collaboration of the Institute for Biodiversity and Ecosystem Dynamics and the Technology Centre both of the Faculty of Science of the University of Amsterdam.

MEMS to track birds
The tracking system weighs a little as a US quarter and is smaller than a car key.

POST A COMMENT

Easily post a comment below using your Linkedin, Twitter, Google or Facebook account. Comments won't automatically be posted to your social media accounts unless you select to share.

Leave a Reply

Your email address will not be published. Required fields are marked *

You may use these HTML tags and attributes: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <strike> <strong>

NEW PRODUCTS

Dynaloy unveils safer cleaners
11/19/2014In response to evolving industry trends and customer preferences for products with better environmental, health, and safety (EHS) profiles, Dynaloy LLC is launching three...
Entegris' VaporSorb filter line protects advanced yield production
10/21/2014Entegris, Inc. today announced a new product for its VaporSorb line of airborne molecular contamination (AMC) filters. ...
Next-generation nanoimprint lithography technology
10/21/2014EV Group (EVG) today introduced its SmartNIL large-area nanoimprint lithography (NIL) process....