GaN nanoelectronics-transistor blocking voltage exceeds 1kV

Research reported in Applied Physics Express (APEX) by Tohru Oka and colleagues at the Research and Development Headquarters for TOYODA GOSEI Co., Ltd in Japan describe the development of ‘vertically orientated’ GaN-based transistors with blocking voltages exceeding 1kV. These findings are important for the application of nitride devices in automobiles and related areas.

Low resistance resulting in reduced power consumption and heating have attracted researchers to study GaN systems for nanoelectronics. Previous work has focused on laterally oriented GaN and AlGaN transistors, which readily provide a high mobility and low resistance. However these structures are limited in terms of the break-down and threshold voltage that can be achieved without compromising device size, which may make them unsuitable for automobile applications. Now Tohru Oka and colleagues at the Research and Development Headquarters for TOYODA GOSEI Co., Ltd in Japan show how they can overcome these limitations.

Oka and his team adopted the vertical orientation. Previous work has already shown that in this orientation the breakdown voltage can be increased by increasing the drift region thickness without compromising the device size. However, so far these structures have still been limited in the blocking voltage that the device can withstand while maintaining a low on-resistance.

“We redesigned the thicknesses and doping concentrations of channel and drift layers to reduce the resistances of the epitaxial layers while maintaining a blocking voltage of over 1.2 kV,” explain Oka and colleagues in the report of their work. They also use hexagonally shaped trench gates to increase the gate width per unit area thereby reducing the specific on-resistance. “These led to the excellent performance of 1.2-kV-class vertical GaN MOSFETs [metal-on-silicon field-effect-transistors] with a specific on-resistance of less than 2 mΩ cm2,” they conclude.

POST A COMMENT

Easily post a comment below using your Linkedin, Twitter, Google or Facebook account. Comments won't automatically be posted to your social media accounts unless you select to share.

One thought on “GaN nanoelectronics-transistor blocking voltage exceeds 1kV

  1. Brent Wagner

    Just a comment that MOSFET is metal-oxide-semiconductor FET, not metal-on-silicon.

    Also, the link: ‘vertically orientated’ GaN-based transistors” goes to a “thermal management” page (although for GaN transistors)

    thanks

    Reply

Leave a Reply

Your email address will not be published. Required fields are marked *

You may use these HTML tags and attributes: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <s> <strike> <strong>

NEW PRODUCTS

Leak check semiconductor process chambers quickly and reliably
02/08/2018INFICON,a manufacturer of leak test equipment, introduced the UL3000 Fab leak detector for semiconductor manufacturing maintenance teams t...
Radiant Vision Systems announces new automated visual inspection system
11/06/2017Radiant Vision Systems, a provider of high-resolution imaging solutions for automated visual analysis of devices and surfaces, an...
SEMI-GAS Xturion Blixer enables on-site blending of forming gas mixtures
10/03/2017The Blixer provides a cost-effective alternative to purchasing expensive pre-mixed gas cylinders by enabling operators to blend ...