Advanced lithography and electroplating approach to form high-aspect ratio copper pillars

It is possible to fabricate copper pillars more than 100μm in height, with aspect ratios up to 6:1, using advanced packaging stepper lithography in conjunction with electroplating.

BY KEITH BEST, Rudolph Technologies, Wilmington, MA, and PHILLIP HOLMES, TEL NEXX, Billerica, MA

Recent years have seen rapid development in the area of advanced packaging. In general, advanced packaging processes are concerned with the interconnection of multiple chips in a single package to provide increased functionality and performance in a smaller volume. System Scaling Technology — the combination of front-end, middle-end and back-end to advance microelectronic systems—utilizes many different advanced packaging approaches, one of which is known as 2.5D packaging. The term “2.5D packaging” has not always been used consistently in literature. The definition used for the purpose of this paper can be summarized as follows: a 2.5D package utilizes an interposer between multiple silicon die and a system-in-package (SiP) substrate, where this interposer has through vias connecting the metallization layers on its front and back surfaces (FIGURE 1).

FIGURE 1. A 2.5D IC/SiP using an interposer and through vias.

FIGURE 1. A 2.5D IC/SiP using an interposer and through vias.


The development of these new packaging schemes is being driven primarily by the rapid growth in mobile handheld devices such as smartphones. Often, the manufacturing processes used are adaptations of well-established front-end processes. A number of different approaches are in development or already in production, including wafer-level chip scale packaging, copper pillar bumps on through silicon vias (TSVs), fan-out wafer level processing, and many more. Of particular interest is the replacement of solder bumps by fine pitch copper pillar bumps, which has been the subject of many new system- in-package designs. Here we investigate the lithography and plating of copper pillars, with focus on heights in excess of 100μm and diameters of 25μm, in anticipation of future SiP requirements.

The increase in the number of I/O channels required by multi-chip system designs has exceeded the density and pitch capabilities that traditional solder bump processes can deliver, so that an alternative connection scheme is required. For interposers, the key enabling technology has been the development of fine pitch copper pillar bumps to provide the high-density interconnection between the interposer and the die. Copper pillar bumps provide a number of advantages over the solder bumps they are supplanting. They can deliver finer pitches, 40μm and less have been demonstrated. They also provide superior electromigration performance in applications where high current-carrying capacity is required. However, lithography and electroplating for fine pitch copper pillar bumps can be particularly challenging. The pillars are electroplated into openings in a thick layer of photoresist which exceeds the capability of most front-end tools. Typically, today’s copper pillars range from 30-50μm in height, with height to width aspect ratios from 1:1 to around 2:1 Here we describe the lithography, resist, and electroplating systems and processes required to create 5:1 aspect ratio copper pillars with heights in excess of 100μm.


A negative tone photoresist (JSR THB-151N) was chosen for this work. Its acrylate groups cross-link on exposure and are developed in industry standard 2.38% TMAH developer. The photoresist was spun to a thickness of 120μm on 300mm silicon wafers with an under bump metallization (UBM) prepared seed layer. To reach the 120μm photoresist film thickness, two coatings of photoresist were required, soft baked at 130C, 300secs and 130C, 360secs respectively. After coating, the photo- resist film was allowed to rehydrate for one hour prior to exposure on a wafer stepper (Rudolph Technologies’ JetStep System).


We used a customized test reticle that included a wide range of sizes and pitches to expose the wafer. When processing a thick photoresist, well-controlled sidewall angles are a critical requirement, especially when electroplating tall copper pillars. Most front-end tools have high numerical aperture (NA) lenses with low depth of focus (DOF) that prevent adequate exposure of thick films with sufficient image contrast to meet the sidewall angle and resolution requirements. Mask aligners also struggle with high aspect ratio imaging, not because of their NA, but because they are unable to provide the necessary focus offset required to expose the film at high resolution, ultimately limiting their aspect ratio and sidewall angle control. Although photoresist sidewall angles are primarily a function of the photoresist material and its processing (pre-bake, post-bake, developing, etc.), the exposure system plays an important role. Accurate focus control across the wafer or substrate is required to achieve consistent and accurate CD control with straight and perpendicular sidewalls.

The lithography stepper employed in this study refocuses for each exposure to ensure optimal focal plane height on advanced packaging substrates that are frequently warped by film stress and thermal cycling. The system’s 0.1 NA provides a large depth of focus to maintain image integrity and CD control through thick films. The stepper lens is achromatized and the installed “filter wheel” provides a choice of illumination wavelengths to expose the photoresist layers: “broadband” ghi (350-450nm), gh (390 to 450nm) or i-line (365nm). This study, with a photoresist thickness of 120μm, required high energy illumination of >1000 mJ/cm<sup>2</sup>, so broadband illumi- nation (g,h,i wavelengths) was employed to maintain high throughput.

The coated wafers were exposed using a focus exposure matrix wafer layout which provided a large number of programmed focus and exposure conditions at a fixed stepping distance to enable quick and efficient character- ization of the lithography process window for any pillar CD. After exposure, the wafers were developed for a total time of 180 secs, using 6 puddles in 2.38% TMAH. A number of wafers were processed in this way to provide images of the resist structures prior to the electroplating process. The SEM micrograph in FIGURE 2 shows a cross section of the photoresist via mold structures, the CD limit appears to be 25μm with this process, since the via is not open to the seed metal beyond this resolution.

lithography 2

It is interesting to note how the sidewall angle of the photoresist changes with decreasing CD suggesting that the plating will generate a “pedestal” type of copper pillar base at larger CDs, becoming progressively more vertical at smaller CDs. However, upon closer inspection of the smallest CDs, a slight “footing” can be observed at the base of the via (FIGURE 3), and this could result in slight undercut of the final copper pillar. The footing effect was most likely the result of our unoptimized develop process.

lithography 3


After the lithography processing, the wafers were sent to TEL NEXX for electroplating. The plating process employed the TEL NEXX Stratus P300 System, a fully automated electrochemical deposition system for advanced wafer-level packaging applications. The system deposits thick metal layers for wafer bumping, redistribution layers, TSVs, integrated passives, and MEMS.

In this study, we used a methanesulfonic acid copper chemistry with organic additives. The bath composition, operating temperature and current waveform were optimized for high speed copper plating into very thick resist features with flat bump profiles. After plating the photoresist was stripped using an immersion bath with EKC162 solution at 60 degrees. To preserve the profile of the photoresist mold the seed layer was not etched. The final copper pillar structures exhibit the inverse photo- resist mold profile (FIGURE 4).

lithography 4

The electroplating process successfully deposited copper in the photoresist via “molds” that were open to the copper seed material, producing good quality copper pillars with a final minimum copper pillar CD of 20μm, indicating a process bias of 5μm. This bias enabled the final copper pillar to reach a 6:1 aspect ratio as shown in FIGURE 5.

lithography 5

The final copper pillars exhibit excellent sidewall angle, 90 degrees for the smaller CDs. The profiles correlate well with the profiles observed in the photoresist SEM cross sections. The change in profile at the base of the photoresist for the smaller CDs did result in a slight undercut of the final copper pillar. The removal of this photoresist foot could be achieved by either increasing the de-scum time or modifying the develop recipe. The larger copper pillars tended to flare out slightly at the base (FIGURE 6) compensating for any undercut. This will benefit the structure during the removal of the copper seed layer.

lithography 6

The rheology of the copper pillar surface is very important for bonding reliability and the uniform plating of Sn solder, which was not performed during this particular study since it was not the primary objective. FIGURE 7 shows the flat top surface of a copper pillar which is free of voids and defects.

lithography 7

For advanced packaging applications, precise copper pillar height control is essential, and lithography CD control plays an important part in the plating process since CD variation directly affects plated height. The electroplating rate is proportional to current per unit area, i.e. the open area at the bottom of the photoresist openings at the beginning of the process, and the area of the evolving metal surface during deposition. Variation in CD or sidewall angle across the wafer will result in a corresponding change in copper pillar height. For example, in the case of copper pillar features a 5% change in CD can cause a 10% change in plated height.


The results of this study prove that it is possible to fabricate copper pillars more than 100μm in height, with aspect ratios up to 6:1, using advanced packaging stepper lithography in conjunction with electroplating. As advanced packaging requirements continue to evolve, the ability to create smaller copper pillar CDs at finer pitches in thick films will provide increased I/O density opportunities for SiP designers. Furthermore, it is clear that achieving high yield and reliability in the final package requires precise CD control throughout the entire photoresist profile to ensure consistent copper pillar height.

KEITH BEST is director applications engineering at Rudolph Technologies, Wilmington, MA. PHILLIP HOLMES is director of technology at TEL NEXX, Billerica, MA


Easily post a comment below using your Linkedin, Twitter, Google or Facebook account. Comments won't automatically be posted to your social media accounts unless you select to share.

Leave a Reply

Your email address will not be published. Required fields are marked *

You may use these HTML tags and attributes: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <s> <strike> <strong>



3D-Micromac launches the second generation of its high-performance microcell OTF laser systems
04/17/2017The high-performance production solution for Laser Contact Opening (LCO) of PERC solar cells achieves a th...
ULVAC launches NA-1500 dry etching system for 600mm advanced packaging systems
03/24/2017ULVAC, Inc. is pleased to announce the NA-1500 dry etching system for 600mm advanced packaging substrates, providing for u...
Astronics Test Systems announces new PXIe test instruments
01/24/2017Astronics Corporation, through its wholly-owned subsidiary Astronics Test Systems, introduced two new test instruments today. ...