Chipworks


GLOBALFOUNDRIES to make Apple chips in New York fab?

I normally don’t have the time to follow local press, but occasionally Google Alerts pops up with something quite interesting. In this case, the Albany Times Union from Albany, New York had an intriguing headline that supports some of the gossip around Apple’s fabrication plans for their A-series processor chips, up to now fabbed by Samsung.

At least in the short term, and from a technology point of view, this makes a lot more sense than Apple’s much-vaunted switch to TSMC, since GLOBALFOUNDRIES (as part of the Common Platform alliance with Samsung) uses a gate-first HKMG process rather than TSMC’s gate-last strategy. In fact, a couple of years ago GLOBALFOUNDRIES and Samsung announced that they were synchronizing their fabs so that customers could transfer products from one foundry to the other without the pain of redesign.

At the 20-nm node it might be different story, since all the foundries will be using gate-last processes; I can see TSMC picking up some of the business then, and there are persistent rumours of Apple trial lots going through TSMC.

It also makes sense that GLOBALFOUNDRIES would make a pitch for the Apple work, since they are hungry for customers, and if they can get in at the 28-nm node they will be well positioned for 20-nm products in the next A-chip generations. Apple business would also help fill the potential second fab for which they have obtained outline planning permission in the Luther Forest Technology Campus.

When it comes to the processes, the 28-nm samples that we have seen from GloFo and Samsung are remarkably similar; this is a SEM cross-section of the transistors and first-level metal in the Rockchip RK3188 that Ajit Manocha announced at Semicon West:

Rockchip RK3188_branded 1
Now let’s look at a similar section out of a Samsung Exynos 5410 app’s processor:

Samsung Exynos 5410_branded 2

There may be some very subtle differences that show up in very detailed analysis, but essentially they look pretty close; the fab synchronizing looks good to me!

So the Times Union report may be just a blog rumour, but given the apparent compatibility of the two processes, it has the whiff of authenticity, and we may see A7s out of New York State in the not too distant future.

Now, if we get one into Chipworks, can we tell the difference?

Apple A7 uses Samsung’s 28nm process

Last week, we started tearing down the Apple iPhone 5S. There has been much speculation that Apple would be moving their processor chips over to TSMC, but I think that we can now decisively say that this has not occurred – they have migrated to 28nm, but still at Samsung.

Apple's A7 Processor Die Image (click to view full screen.)

Apple’s A7 Processor Die Image (click to view full screen.)

Earlier in the day last Friday we established from the look of the die that the A7 was manufactured by Samsung. In the meantime our guys have been grafting away in the lab, and came to the “boring” conclusion that the chip looked exactly the same as the last one.

The devil is in the details, however, and we have to do some measurements to see the difference.

Below is a SEM image of a cross-section of a group of transistors in the A6 (APL0598) chip, fabbed in the Samsung 32nm high-k-metal gate (HKMG) process.  For convenience we have measured ten, so the dimension of the contacted gate pitch is 123nm.

SEM Cross-Section of Apple A6 (APL0598) Die (click to view full screen)

SEM Cross-Section of Apple A6 (APL0598) Die (click to view full screen)

Now if we look at a similar image of the A7 (APL0698) below, and we see that the contacted gate pitch is 114nm. So, even allowing for measurement error (we figure +/- 5%), we’re pretty sure that we see a shrink, and that the A7 is made on the same process as the new Samsung Exynos 5410, the 28nm HKMG process.

SEM Cross-Section of Apple A7 (APL0698) Die (click to view full screen.)

SEM Cross-Section of Apple A7 (APL0698) Die (click to view full screen.)

That doesn’t sound much, a mere 4 nm, but again if you do the math and remember  that we’re talking area shrink, not linear dimensions, then 28^2 divided by 32^2 (784/1024) comes out at about 77 percent of the area for the equivalent functionality. Or, given that the A7 is 102 mm^2 compared with 97 mm^2 for the A6, more functions in a slightly bigger area.

Below is a delayered sample of the A7, but we have yet to identify what that functionality is, something that we will be doing in the next few weeks.

Transistor-Level Image of the Apple A7 (click to view full screen)

Transistor-Level Image of the Apple A7 (click to view full screen)

 

 

 

Qualcomm Snapdragon 800 and Rockchip RK3188 – Battle of the Foundries!

The Snapdragon 800 (Qualcomm MSM8974) is Qualcomm’s leading-edge, low-power, mobile phone app’s processor with built-in 3G/4G LTE modem, using the latest Krait 400 CPU rated at 2.3 GHz and their 450 MHz Adreno 330 GPU. It was launched at this year’s CES International with this rather slick commercial.

Significantly, it is fabricated using the TSMC 28HPM (28-nm, High-Performance Mobile) process, which extends TSMC’s high-k, metal gate (HKMG) processing into the mobile space. Before this, all Qualcomm’s mobile chips were made with the TSMC 28LP polysilicon gate/SiON process; and to our knowledge, this is the first volume production part using 28HPM.

The 28HPM process sees a shrink in minimum gate lengths and SRAM cell size when compared with the 28HP process, and the inclusion of embedded SiGe source/drains for PMOS strain, which was not part of 28HPL.

 

TSMC 28HPM PMOS transistor

TSMC claims the technology can provide better speed than 28HP while giving similar leakage power to 28LP. The wide performance/leakage coverage apparently makes 28HPM ideal for applications from networking, tablet, to mobile consumer products.

 

 

The Rockchip RK3188 is targeted on tablets rather than phones, but it uses the GLOBALFOUNDRIES’ 28SLP (Super Low Power) process, their equivalent to TSMC’s 28HPM, aimed at mobile products. It is again a quad-core part, this time with ARM A9 CPUs running at 1.6 GHz, and quad-core ARM Mali GPUs rated at 600 MHz.

 

Rockchip RK3188 floorplan showing some of the major functional blocks

Rockchip has squeezed the functionality into ~25 sq. mm, less than a quarter of the size of the Qualcomm chip; not least because the A9 cores are noticeably smaller than the Qualcomm-designed Krait cores based on the ARM architecture, and of course there is no LTE.

GLOBALFOUNDRIES is obviously happy to have won the Rockchip business – their CEO Ajit Manocha specifically mentioned the partnership in his keynote talk at Semicon West:

 

 

The 28SLP process differs in a basic way from the TSMC 28HPM – GloFo is using their version of the Common Platform (GLOBALFOUNDRIES, IBM, Samsung) 28-nm process, which is a ‘gate first’ variety, i.e. a polysilicon gate is used with a HKMG stack at its base, doped to form NMOS and PMOS transistors. TSMC’s ‘gate last’ process uses a sacrificial polysilicon gate for all the processing up to the end of the source/drain processing, then the polysilicon is removed and replaced with distinct HKMG stacks which are tuned for NMOS and PMOS.

Like the other Common Platform HKMG processes, a SiGe channel is used in the PMOS transistors, though with GloFo’s own spin – none of these processes are the same from the different vendors.

Compared with the older 32-nm HKMG process used for AMD processors, the Rockchip uses bulk silicon, not SOI, and gate lengths, contacted gate pitches and SRAM cell size are shrunk, but in the same ballpark as TSMC’s process. There is no dual-stress liner or embedded SiGe source/drains to enhance PMOS performance, but this product is rated at 1.8GHz rather than TSMC/Qualcomm’s 2.3 GHz.

 

GLOBALFOUNDRIES 28SLP PMOS transistor

So we have two processes targeted at similar spaces, but with very different takes on how to do it. TSMC and Qualcomm are following the industry norm, supplying chips to a US company from Taiwan, and GLOBALFOUNDRIES and Rockchip have reversed the trend, supplying chips to China from the West, and it’s tempting to speculate they are from the Malta fab in New York.

A Dispatch from SEMICON West – Applied Materials Launches Epi System Focused on NMOS Strain

Flying in to SFO on July 7, I must have been one of many attendees delayed by the after-effects of the Asiana Airlines crash there the day before. In my case it was only an hour or so (i.e. as normal), but we couldn’t avoid seeing the remains of the aircraft as we landed. Despite the fact that the plane was burnt out, I couldn’t help being impressed that the main body of the plane had survived the impact, and of course all but two of the passengers survived – and they were outside the plane.

By coincidence I flew through Heathrow a week after another 777 did a belly-flop there a few years ago, and again I was impressed at the strength of the airframe – an engine had been ripped off a wing but otherwise it was pretty well intact – and fortunately in that case there was no fire, and no fatalities.

That’s hardly relevant to SEMICON West of course, but it’s hard not to get involved when we get that close to the statistics of travel accidents, be they road, rail or air.

Anyway – back to the show – or at least the pre-show events. Applied Materials (AMAT) had an analyst day on Monday, and in the morning they invited a few of us to some product launches. The one that caught my eye and ear was a new epi system focused on NMOS epitaxial source/drains to create channel strain, since that has been mooted as a next step for several years now, but not shown up in a production context.

The theory is that if you can get carbon and phosphorus to replace silicon atoms in the crystalline structure, because they are smaller than silicon, they will generate tensile stress in the crystal lattice. When it is deposited in cavities etched in source/drains the stress is applied to the channel. (Putting the larger germanium atoms in the lattice has the opposite effect, and creates compressive stress, an effect used since the 90nm node.)

 

Schematic of e-SiGe in PMOS (left), and e-Si:CP in NMOS (right) source/drains

The problem (as I understand it) has been that the carbon does not like staying in such substitutional positions, and it will abandon them as soon as it sees anneal temperatures, thus losing the stress effect. Phosphorus is happy to be substitutional, and has of course been used as a n-type dopant for decades, so I suspect the problem there is simply getting the concentration to a level sufficient to stress the lattice.

So on Monday AMAT launched the Applied Centura RP Epi system with an NMOS transistor application. To quote: “This capability supports the industry’s move to extend epi deposition from PMOS transistors to NMOS transistors at the 20nm node, enabling chipmakers to build faster devices and deliver next-generation mobile computing power.”

 

 

The Applied folks seem confident that once the epi is formed, the carbon can be kept stable and capable of applying the strain at the end of the manufacturing process. I quizzed them as to how this is done and apparently the keys are the quality of the clean after cavity etch (i.e. AMAT’s Siconi dry clean), plus millisecond annealing to minimize the thermal budget.

There is plenty of literature documenting the effect; at last year’s IEDM conference, IBM announced their 22nm server process, which uses embedded strain for both N- and P-MOS[1]. Together with nitride stress, they claim a 10 percent performance increase over the 32nm equivalent. I also asked the speaker there about the carbon stability, and he confirmed that they regard it as a manufacturable process.

Cross-section of NFET showing embedded Si:C Source/Drain Stressor [1]

It seems the time of e-Si:CP NMOS is here. Applied certainly hopes so: they estimate the available market at over $500M and expanding, and that revenue has doubled over the last five years, and they have more than 80 percent share. They see an incremental $250M in revenue from epi systems by 2016.

I’ve been waiting for epi-strained NMOS for the last couple of process generations, and had almost been convinced that it wouldn’t happen. Now we have to watch for it when we get the next 20nm parts!

[1] S. Narasimha et al., “22nm High-Performance SOI Technology Featuring Dual-Embedded Stressors, Epi- Plate High-K Deep-Trench Embedded DRAM and Self-Aligned Via 15LM BEOL”, IEDM 2012, pp 52 – 55.

Economy Threatens Semi Growth, not Technology – so Say Fab Engineers at ASMC

It’s still spring in the north-eastern part of North America, and that means it’s the time of year for the Advanced Semiconductor Manufacturing Conference, in the amiable ambiance of Saratoga Springs, New York. The conference took place last month, on May 13 – 16.

As the name says, ASMC is an annual conference focused on the manufacturing of semiconductor devices; in this it differs from other conferences, since the emphasis is on what goes on in the wafer fab, not the R&D labs, and the papers are not research papers. After all, it’s the nitty-gritty of manufacturing in the fab that gets the chips out of the door, and this meeting discusses the work that pushes the yield and volumes up and keeps them there.

I always come away impressed by the quality of the engineering involved; not being a fab person myself any more, it’s easy to get disconnected from the density of effort required to equip a fab, keep it running and bring new products/processes into production. Usually the guys in the fab only get publicity if something goes wrong!

There were 81 papers spread over the three days, with keynotes from Subi Kengeri of GLOBALFOUNDRIES, Vivek Singh and Tim Hendry of Intel, and Bill McClean of IC Insights, and also a panel discussion on the benefits/pitfalls of 450mm wafers. This latter is particularly apposite here in Saratoga Springs since we have the Global 450 Consortium building their new fab at CNSE in Albany, just down the road from here.

The conference kicked off with Subi Kengeri’s keynote – “Assessing the Threats to Semiconductor Growth: Technology Limitations versus Economic Realities” – essentially, will Moore’s law run out of steam before or after chips get too expensive to sell?
??????

Subi Kengeri of GLOBALFDOUNDRIES giving the opening keynote at ASMC

On the one hand, we anticipate huge growth in revenue on the back of the mobile industry, with the foundries expected to outpace the overall industry, and leading-edge revenue doubling in the next five years:

And we know that technologically we can get to 14nm or even 10nm with multiple patterning, finFETs, etc., and possibly new materials.

On the other hand, SoC designs are getting larger, faster, and more complex, and wafer fab costs are going up, with lithography being the biggest component. (It’s worth noting here that at the 20nm generation, the middle-of line (MOL) processing separates from the back-end of line (BEOL), since the 1X interconnect level has to be double-patterned.)

This increased design and fab complexity also adds to development time and increases the time-to-volume (TTV), adding a time cost and reducing the return on investment.  This could conceivably get the industry into a feedback loop, since TTV delay slows down industry growth, which slows downs investment, which slows down development, which slows down TTV.

The other obvious effect is the industry consolidation which we’ve all been part of – according to Subi only four companies will be fabbing at the 14nm node:

I had wondered why IBM wasn’t on the list until I saw the 50K wafers/month cut-off; even with all the games chips that IBM has churned out over the last few years, I doubt that IBM has hit that number.

If the predictions are correct, by 2016 28nm and below will make up 60 percent of the foundry market, split between four companies (or three, if Intel’s foundry ambitions don’t work out). That thought raised the prospect of capacity limitations, and gave Subi a chance to promote GLOBALFOUNDRIES as the only one of the three with a global footprint, and not in geographically or politically risky zones. 

He finished his talk by identifying critical growth enablers for the industry as optimized SoC technology architecture (with a focus on techno-economics), coupled with true collaborative R&D, and of course the global footprint. And he also asked all of us in the room which was the biggest threat to growth – technology scaling limits, or the economic realities? Being techies, we all know that the next few generations are within sight technically, so we all voted for the economic problems – the part we can’t control!
???

The final vote

As you can see, the vote was pretty overwhelming.

N.B.  All images courtesy of GLOBALFOUNDRIES.

Intel Foundries MEMS for Fuel Cell Start-up Nectar

In the last couple of years there have been announcements that Intel will be acting as a foundry for FPGA company Achronix, PLD maker Tabula and programmable network processor provider Netronome, as well as much speculation about making chips for Apple.

All these reports refer to using Intel’s leading-edge 22-nm tri-gate process. However, at CES a couple of weeks ago, my eye was caught by a 200-mm wafer on display at the booth of a little company called Nectar, who were pitching their fuel-cell based USB charging system. They claim that the charger can top up an iPhone battery at least ten times before the fuel pod has to be changed. The whole device can be held in one hand:


Fig. 1 Nectar fuel-cell charger (at right) on display at CES
The cell uses butane fuel in a silicon-based power cell, and by the look of the image below the cells are ~22 mm square.

Fig. 2 Nectar MEMS wafer on display at CES

The press pack given out at the show includes a paper [1] with a description of the technology; a solid oxide fuel cell (SOFC) is used, which is compatible with silicon processing. I’m not a fuel cell expert, so to quote from the paper:

"Fuel cells operate by creating opposing gradients of chemical concentration and electrical potential. When an ion diffuses due to the concentration gradient, the associated charges are transported against the electric field, generating electrical power. In the case of SOFCs, the mobile ion is O2-, and the oxygen gradient is created by providing air on one side (the cathode) and a fuel mixture which consumes any free oxygen on the other side (the anode). Any fuel which burns oxygen will produce power in an SOFC." The schematic below (Fig. 3) illustrates the process.


Fig. 3 Operating principle of solid oxide fuel cell

The butane has to be cracked so that hydrogen is available, which is done in a "fuel processor" within the cell. The following diagram shows the sequence of power generation [1].


Fig. 4 Diagram of fuel cell power generator

The Nectar generator chip contains the fuel processor, fuel cell stack, and catalytic converter. The fuel processor cracks the butane into hydrogen and carbon monoxide by using a lean mixture of air and butane to give incomplete combustion; then O2- ions from the air feed on the other side of the SOFC stack migrate through the stack and combine to give water and carbon dioxide; then the exhaust gases exit through a catalytic converter.

It is here that the MEMS structure comes in – even incomplete combustion of the butane gives temperatures of 600 – 800C, so to integrate this into a package that can be carried around, and also must have conventional silicon for power conditioning has to be a challenge. The fuel processor uses a mechanically suspended reaction zone formed in silicon, with a heat exchanger adjacent to the reaction zone, as shown in Fig. 5 [1, 2]:


Fig. 5 Experimental (top) and later (bottom) MEMS fuel processor

The nitride tubes contain the gas stream, while the silicon bars provide the heat transfer from the exit stream to the input stream. Fig. 6 shows the modeled heat transfer in a pair of tubes (red = hot, blue = cool) [1]. The U-bend at the end is the reaction zone; ignition is started using a platinum heater deposited on the surface, and once started continues autothermally.



Fig. 6 Schematic of modeled heat recovery in reaction loop

The SOFC itself is built of yttrium-stabilized zirconium oxide (YSZ) plates held in a nitride matrix, supported on silicon walls. In order to keep the profile as slim as possible a "planar stack" of plates is formed as shown schematically in Fig. 7(a), with the detail of a single plate in Fig 7(b)[1].


Fig. 7 (a) Schematic of SOFC plates and (b) Cross-section of single cell

Details of the anode and cathode materials are not given, but they clearly have to be porous to allow the gases to diffuse through and react. Similarly nothing is said about the catalytic converter, but that also should be compatible with MEMS manufacturing.

The inherent ability of MEMS processes to provide vacuum-sealed structures helps contain the heat generated within the system, and the chamber is lined with reflective shielding to further reduce heat losses. Even so a new sealing glass had to be developed, since the conventional lead-glass frits used in many MEMS devices was not up to the job.

The whole assembly is packaged in a “tin can” with the gas inlets and exits on the reverse side of the package:


Fig. 8 Assembled and packaged Nectar fuel cell

Of course, smart as the fuel cell manufacturing is, it is only part of a charging system. Fig 9 [1] is a block diagram of the whole system, showing the peripheral components needed to complete the unit and turn it from a concept into a functioning charger. The battery allows power to be drawn instantaneously from the charger while the fuel cell fires up, and also powers the supporting components. 

Fig. 9 Block diagram of Nectar fuel-cell charging system

I started this blog off by talking about Intel, then veered off into a description of the Nectar charger – what was I babbling about? Well, when I was looking at the charger at CES I had a word with Sam Schaevitz of Lilliputian Systems, which developed the Nectar, and asked him who made the MEMS, expecting to hear about of one of the MEMS foundries that are around. (Lilliputian is a spin-off of MIT – Sam is founder and CTO.)

Much to my surprise, he answered "Intel"! As I said at the beginning, there has been quite a bit of comment about Intel moving to the foundry model, but nothing about them being in the MEMS business. It turns out that the work is done at Intel’s fab in Hudson, Mass., which those with long memories will recall was the DEC fab bought by Intel when DEC went under back in 1998.

I had assumed that it would have been closed long ago, but Intel claims to have put $2B into the plant, converting it to 130 nm back in 2001, and it’s now known as Fab 17. It is now Intel’s sole remaining 200 mm facility. In addition they have their Massachusetts Microprocessor Design Center and the Massachusetts Validation Center on the same site, employing ~1700 in total.


Fig. 10 Intel’s Fab 17 in Hudson, MA (source: Intel)

Intel’s Global Manufacturing Fact Sheet states that the fab manufactures “chipsets and other” – the Nectar chip is clearly an “other”! Nectar announced their supply link with Intel back at the end of 2010, but I missed it at the time; Intel Capital also has a stake in Lilliputian.

Aside from the regular processing equipment, Intel must have invested in deep RIE etchers, never mind the deposition gear capable of forming YSZ and the other exotic materials likely used for the anode/cathode and catalytic converter. Presumably Intel’s need for 130-nm chipsets is slowly fading; this looks like a praiseworthy way of keeping the fab going, as well as supporting a local start-up – and one wonders what other foundry work is going on there. If you do have the urge to buy a Nectar mobile power system, it will be available through Brookstone in the summer.

References:

[1] S. Schaevitz, Powering the wireless world with MEMS, Proc. SPIE 8248, Micromachining and Microfabrication Process Technology XVII, 824802 (February 9, 2012)

[2] L. Arana et al., A Microfabricated Suspended-Tube Chemical Reactor for Thermally Efficient Fuel Processing, J. MEMS 12(5) 600-612

IBM surprises with 22nm details at IEDM

Monday afternoon at the 2012 IEEE International Electron Devices Meeting, IBM discussed their 22nm SOI high-performance technology [1], aimed at servers and high-end SoC products. To an extent, this is an extension of the 32nm process, using epitaxial SiGe for the PMOS channels and stress, and dual-stress liners for both NMOS and PMOS strain. However, there were a couple of surprises buried in there — at least for me!

The first surprise was that this is a gate-first process, contrary to the announcements made by the Common Platform group that the 20nm class processes would be gate-last. The difference seems to be that this technology IS aimed at high performance servers and their support devices, not consumer products, and this is IBM’s process for its high-end products, so they are sticking with the proven formula and pushing it to the next level.

The gate dielectric stack has been scaled to reduce the inversion thickness (tinv) by 7%/10% (NMOS/PMOS), without affecting mobility, modifying the clean, depositions (using ALD for the interfacial oxide), and anneal steps to achieve the lowest tinv published so far, and reducing DIBL by 6%/8%.

The second surprise was that e-Si:C (embedded carbon-doped source/drains) has been used for NMOS stress — IBM claimed that this is the first time in a production process. I had just about written e-Si:C off as a viable manufacturing technique, since I’ve been hearing over the last few years that the carbon is not stable and does not stay in the substitutional crystalline sites where it’s needed. However, here we are told that it is stable and that it survives all the backend processing, even with the 15 layers of metal used in this technology.

Fig. 1: TEM cross-sections of e-SiGe in PFET (left), and e-Si:C in NFET [1]

The e-Si:C incorporates ~1.5% C, which combined with fourth-generation e-SiGe with more Ge and the dual-nitride stress liners, gives 25% more strain than the 32nm process.

The gate-first approach allows conventional contacts and self-aligned silicide, and judging by Fig. 3, raised source/drains help to reduce S/D resistance and keep the gate/contact capacitance under control.

The embedded trench DRAM is not a surprise, IBM has a long history in the field and they have now brought it to the point where access time is shorter than SRAM [2, 3, 4].

Fig. 2: IBM roadmap for e-DRAM [2]

The big change here is that the substrate wafer has an N+ epi layer on it to replace the diffused cell plate of earlier generations. This allows denser packing, since a formerly-needed diffused spacer is removed, giving a cell size of 0.026 μm2. It also enables deeper trenches, giving higher cell capacitance for an areal capacitance of 280 fF/ μm2. The trench capacitors are also used as decoupling capacitors, and these are isolated by deep trench isolation so that they can be biased independently.

Fig. 3: (left) SEM cross-section of e-DRAM trench capacitors; (right) plan-view and
cross-section schematics of decoupling and isolation trenches, showing N+ epi plate
[1]

(As an aside, one of the comments from Greg Taylor of Intel in his microprocessor talk in Sunday’s IEDM short course was that the analog functions that are part of a CPU are getting more significant as dimensions shrink. Both Intel and IBM are now using on-chip decoupling capacitors; Intel with MIMCAPs, and IBM with trench capacitors.)

The complexity of IBM’s server chips is reflected in the 15 levels of metal. The first level is doubled-masked with a litho-litho-etch sequence to allow for orthogonal layout; the rest are single-patterned using uni-directional layout. Self-aligned vias help with packing, and both ultralow-k and low-k dielectrics are used as needed.

IBM is prototyping 22nm server parts right now, but even when they get into the servers for sale, I likely won’t get my hands on one — a bit beyond my procurement budget!

[1] S. Narasimha, IEDM 2012 pp. 52-55
[2] S. Iyer, ASMC 2012
[3] N. Butt, et al., IEDM 2010 pp. 616-619
[4] J.Bart et al, IEEE Journal of Solid-State Circuit, Jan 2011

Intel details 22nm trigate SoC process at IEDM

After launching their 22nm tri-gate high-performance logic product back in the spring, Intel have been promising to show off their SoC derivative, and yesterday was the day at the 2012 IEEE International Electron Devices Meeting. [1]

As you can see from Table 1, we now have six transistor options; the high-voltage transistors use a thicker gate dielectric stack (Fig. 1), and the gate pitch and gate lengths have been tuned to suit the end purpose, and of course there is some (unspecified) source/drain engineering.

Intel 22nm SoC transistor options [1]

Fig. 1: TEM linear- and cross-sections of, and tilted SEM of,
logic (top) and high-voltage (bottom) transistors
[1]

If I read the paper correctly, the SoC process can incorporate up to twelve metal layers, with up to six 1�? layers, and an extra 3�? level, but only one 4�? level Fig. 2). When it comes to the passives, the same MIMCAP layer is used as we saw in the CPU together with similar finger capacitors to the 32nm SoC; inductors are also formed in the 6μm thick top metal; and there are precision resistors available.

Fig. 2: Interconnect stacks for CPU (left) and SoC processes [1]

A bunch of SRAM cells are offered, both six- and eight-transistor varieties, with the 6T cells ranging from the minimal 0.092 to 0.13 μm2. These show the quantization of the transistor size quite nicely — if you look closely at Fig. 3, you can see that the number of fins used for each transistor increases with the size of cell, with the exception of the T3 and T4 PMOS pull-up devices, which only have one fin.

Fig. 3: Intel’s 6T SRAM options in their SoC technology, including
high density / low leakage (HDC), low voltage (LVC), and high performance (HPC)
[1]

Overall Intel claims a 100-200 mV reduction in Vt for all transistor types, leading to a ~40% reduction in dynamic power.

Intel is trying to catch their SoC schedule up with the CPU launches, so we will likely see 22nm SoC chips next year, and the 14nm CPU and SOC processes should be launched in parallel, theoretically by the end of 2013.

[1] C-H Jan, IEDM 2012 pp. 44-47

GlobalFoundries takes on Intel with 14nm finFET “eXtreme Mobility” process

A week after Intel were claiming that their 14nm process will be ready to go at the end of next year, GLOBALFOUNDRIES (GF) announced that they will have a 14nm finFET process for launch in 2014. Unfortunately they timed it to coincide with the iPhone 5, so we at Chipworks were tied up for a few days tearing it down.

However, I don’t want to ignore this development — it could make the 2014 an interesting year! GF have dubbed the new process 14XM, for "eXtreme Mobility," since from the start it has been targeted on mobile applications — after all, mobile products are the volume driver in the chip business these days.

And what’s the biggest complaint from mobile users? Having to charge them so often, as battery technology has not improved at anything like a rate comparable to chip performance.

So while GloFo got started in high-k metal-gate (HKMG) making 32nm parts for AMD, they have seen the obvious and are generating low-power processes, beginning with the 28-SLP, moving to the 20-LPM, and now the 14XM.

The 20-LPM process claims a 40% reduction in power from the 28nm generation, and the 14XM claims 40%-60% increased battery life over 20-LPM. The 20nm generation is scheduled for next year, and as noted earlier 14XM is due out in 2014, a year later, breaking the two-year cadence that we’ve all got used to. Apparently 20nm wafers are running the full process in the Malta, NY fab right now.

They’re accelerating the process launch by using the 20-LPM middle/back end-of-line metal stack with the finFET front end. In the 20nm process the 1x metal pitch is 64nm and the single-patterned metal is 80nm — coincidentally, the latter is the same as Intel’s tightest pitch in their 22nm product.

20nm metal pitches shown at the 2012 Common Platform Tech Forum (CPFT)

The use of the 3D finFET structure enables a higher performance/unit area, or lower power/unit area at a given performance at the transistor level. The graph below shows some estimates made by their R&D group.

SoC Performance vs. power — lower power at constant frequency [1]

Functional scaling itself will be limited to some extent by the 20-LPM metal density, but presumably some die shrink can be achieved by using more metal layers, and also the increased current density will allow some compaction since higher-current transistors will be smaller. Keeping single patterning will mitigate the cost, compared with double patterning for denser layers.

The process will also continue from the 20-LPM process in that it will use gate-last (replacement metal gate) technology on a bulk substrate. The R&D group in New York has published a couple of papers [2, 3] referencing a 40nm fin pitch, but 14XM will have a fin pitch of 48nm to leave some slack in the lithographic challenge, and minimize quantization errors. Together with the metal pitches of 64 and 80nm, it implies a 16nm grid as a basis for layout. The use of 64nm Metal 1 presumably also means that the contacted gate (CG) pitch will be 64nm.

The Intel 22nm process has a fin pitch of 60nm, and a CG pitch of 90nm, so it’s not unreasonable to assume that their 14nm process will have similar numbers.

We will see whether the fin will be tapered similar to Intel’s; these images (below) from CPTF seem to show a vertical fin atop the STI profile, but then, they are only schematics. Using a single (STI) etch to shape the fins (as I think Intel does) should certainly be less complex than trying to get vertical-walled fins on top of the STI trench sidewall.

The economic challenge in going to 14nm is almost as huge as the technical challenge, and keeping the cost/power/performance (CPP) metric in check as process complexity spirals upwards has caused inevitable concern. In particular, the cost benefits of shrinking die size tends to go away as the lithography demands double, triple, and even quadruple patterning.

Jen-Hsun Huang of Nvidia has publicized his concern about increasing wafer costs at last year’s IPTC (International Trade Partner Conference) meeting — the plot below shows the increasing gap in wafer cost between successive nodes:

So if GLOBALFOUNDRIES, or any other foundry, wants to keep the customers coming, they have to mitigate the cost increase going to the next node. Taking a hybrid approach such as the 14XM process should be an attractive option for their existing and future customers.

It’s interesting to note that TSMC has changed tack slightly and are now saying that they will be using finFETs at 16nm, not 14nm. They are also claiming that their 20nm metal pitch is leading-edge at 64nm, although that’s the same as GF’s. It’s tempting to wonder if TSMC will also use a hybrid approach and transfer their 20nm back-end to the 16nm node, since the arguments are the same. Chenming Hu thinks so, anyway. TSMC are predicting 16nm risk production in 2014.

We’ll see if GF can match Intel’s timing — Mark Bohr sounded very confident at the Intel Developer Forum, when he said their 14nm product would be ready for the tail end of next year. Will we have GF-produced finFETs in early 2014? And will their finFETs be better than Intel’s?

My thanks to Subi Kengeri for clearing up some of the technical details.

[1] A. Keshavarzi et al., Architecting Advanced Technologies for 14nm and Beyond with 3D FinFET Transistors for the Future SoC Applications, Proc. IEDM 2012, pp. 67-70.

[2] T. Yamashita et al., Sub-25nm FinFET with Advanced Fin Formation and Short Channel Effect Engineering, Proc. VLSI 2011, pp. 14-15.

[3] C.-H. Lin et al., Channel Doping Impact on FinFETs for 22nm and Beyond, Proc. VLSI 2012, pp. 15-16.

The Elephant Has Left the Room – 450 mm is a Go!

It’s the day before Semicon opens up, and we have had a slew of announcements on 450 mm, the biggest of which was the joint ASML/Intel notice that Intel will be taking a share of ASML as a way of funding 450 mm and EUV R&D. Simultaneously imec released that the Flemish government would invest in their upcoming 450-mm facility, and imec and KLA-Tencor declared that a 450-mm capable SP3 450 unpatterned wafer defect inspection tool had been installed at imec.

ASML announced it as a “co-investment program” in which Intel would invest EUR829 million (about $1B) over the next five years, EUR553M of which would be in 450 mm R and D. Intel focused more on the R and D and described the financial details later.

They cited the classic economics of doubling the wafer size, and the potential die cost reduction:

All of which is logical, but ASML has been notably reticent about making any comments on 450-mm R and D in the past, to the point where some industry watchers (including me) have wondered if we would ever get there; if the biggest litho vendor isn’t on board, there won’t be any 450-mm fabs even if all the other equipment companies are ready.

Which brings me to the elephant in the title. Last year at Semicon there was a 450 mm panel, and everyone was pontificating wisely, until Bob Johnson of Gartner commented on "the elephant in the room – ASML has no 450-mm program, so why are we bothering to even talk about it?" (my paraphrasing). Which kind of shut the whole thing down.

However, that particular pachyderm has clearly moved on, and we have an ASML roadmap with both 450 mm and EUV in it:

We won’t have any production tools until 2018, but at least a huge barrier to adoption is lifted; now there are just the simple engineering tasks of getting a substrate the size of a turkey platter exposed with patterns with feature sizes of 14nm or smaller. Has anyone said that this industry is crazy?

By coincidence Mike Splinter of Applied Materials was speaking at the imec Technology Forum, and he commented that 300-mm had just about paid off its development costs as of now, roughly 14 years after the launch of the first systems. He guesstimated the costs for developing 450 mm as $15 – 20B, with an as yet unknown payoff time. (Has anyone said that this industry is crazy?) However,  he also said this time last year that Applied would spend over $100M on 450 mm and that "450 mm is going to happen."

Clearly Intel has recognised that if it wants 450 mm to go forward, then it has to pony up some cash to encourage the litho side, and it is already invested in the consortium being set up at Albany. For anyone interested in the financial side of the deal, check out the press releases linked above, or watch ASML CFO Peter Wennink in a video.

Looks like 450 mm is actually going to happen!