Tag Archives: HVM

XMC becomes YRST or Changjiang Storage

As reported by Digitimes, a major enterprise in Wuhan, China has broken ground on the first of three mega-fabs to produce 3D-NAND chips. The final fab name-plate may ultimately read XMC or YMTC or YRST or possibly Changjiang Storage (not to be confused with GuangDong ChangJiang Storage Battery), but it is over half owned by the Chinese government’s Tsinghua Unigroup.

Total investment in XMC/YRST by Tsinghua Unigroup is reported by Digitimes to be US$24 billion. In 2015 Tsinghua Unigroup bid US$23 billion to buy Micron Technology Corp, but the company was not for sale.

In 2013 as reported at EETimes, the fab re-branded itself as XMC from the former Wuhan XinXin Semiconductor Manufacturing (WXIC). Dr. Simon Yang was CEO of WXIC/XMC from 2012 to last November when he resigned to become the CEO of Yangtze Memory Technologies Co. Ltd.

Two months later the new company is reportedly to be called Yangtze River Storage Technology (YRST), according to DIGITIMES. Meanwhile, Nikkei Asian Review reports that YRST is also known as Changjiang Storage.

High-Volume Manufacturing (HVM) in the first fab is planned for 2018, and the third fab on the campus is expected to bring 300k 300mm wafer-starts-per-month online by 2020. Rick Tsai the ex-CEO of Taiwan Semiconductor Manufacturing (TSMC) and Shih-Wei Sun the ex-CEO of United Microelectronics (UMC) have both reportedly joined Tsinghua Unigroup.


SAQP Specs for 7nm finFETs

As discussed in my last Ed’s Threads, lithography has become patterning as evidenced by first use of Self-Aligned Quadruple Patterning (SAQP) in High Volume Manufacturing (HVM) of memory chips. Meanwhile, industry R&D hub imec has been investigating use of SAQP for “7nm” and “5nm” node finFET HVM, as reported as SPIE-AL this year in Paper 9782-12.
The specifications for pitches ranging from 18 to 24 nanometers are as follow:

  • 7.0nm Critical Dimension (CD) after etch,
  • 0.5nm (3sigma) CD uniformity (CDU), and
  • <1nm Line-Width and Line-End Roughness (LWR and LER) assuming 10% of CD.

“Pitch walk”—variation in final pitch after multi-patterning—results in different line widths, and can result in subsequent excessive etch variation due to non-uniform loading effects. To keep the pitch walk in SAQP at acceptable levels for the 7nm node, the core-1 CDU has to be 0.5nm 3sigma and 0.8nm range after both litho and etch. In other presentations at SPIE-AL this year, the best LER after litho was ~4nm, improving to ~2nm after PEALD smoothing of sidewalls, but still double the desired spec.

The team at imec developed a SAQP flow using amorphous-Carbon (aC) and amorphous-Silicon (aSi) as the cores, and low-temperature Plasma-Enhanced Atomic-Layer Deposition (PEALD) of SiO2 for both sets of spacers. Bilayer DARC (SiOC) and BARC were used for reflectivity control. Compared to SAQP schemes where the mandrels are only aSi, imec claims that this approach saves 20% in cost due to the use of aC core and the elimination of etch-stopping-layers.


Litho becomes Patterning

Once upon a time, lithographic (litho) processes were all that IC fabs needed to transfer the design-intent into silicon chips. Over the last 10-15 years, however, IC device structural features have continued to shrink below half the wavelength of the laser light used in litho tools, such that additional process steps are needed to form the desired features. Self-Aligned Double Patterning (SADP) schemes use precise coatings deposited as “spacers” on the sidewalls of mandrels made from developed photoresist or a sacrificial material at a given pitch, such that after selective mandrel etching the spacers pitch-split. SADP has been used in HVM IC fabs for many years now. Self-Aligned Quadruple Pattering (SAQP) has reportedly been deployed in a memory IC fab, too.

An excellent overview of the patterning complexities of SAQP was provided by Sophie Thibaut of TEL in a presentation at SPIE-AL on “SAQP integration using spacer on spacer pitch splitting at the resist level for sub-32nm pitch applications.” Use of a spacer-on-spacer process flow—enabled by clever combinations of SiO2 and TiO2 spacers deposited by Atomic Layer Deposition (ALD)—requires the following unit-process steps:
1 193i litho,
2 ALD spacers,
2 wet etches, and
4 plasma etches.

Since non-litho processes dominate the transfer of design-intent to silicon, from first principles we should consider such integrated flows as “patterning.” Etch selectivity to remove one material while leaving another, and deposition dependent on underlying materials determine much of the pattern fidelity. Such process flows are new to IC fabs, but have been used for decades in the manufacturing of Micro-Electrical Mechanical Systems (MEMS), though generally on a patterning length scale of microns instead of the nanometers needed for advanced ICs. R&D labs today are even experimenting with Self-Aligned Octuple Patterning (SAOP), and based on the legacy of MEMS processing it certainly could be done.


Silex’ Strategic Acquisition by China

A secretive investment holding company out of Hong Kong named GAE Ltd has acquired 98% of the shares in Silex Microsystems AB (Jarfalla, Sweden). The transaction took place on July 13th of this year when the former major shareholders agreed to sell all of their respective holdings, while Silex founder and CEO Edvard Kalvesten retains 2% of the shares in the company and continues his role as CEO and board member of Silex. No changes are made to the organizational structure or business operations of Silex, while the new owners plan to build a new high-volume manufacturing line near Beijing that clones the equipment and processes in Sweden with first wafers out by mid-2017 (as reported at EETimes).

Silex claims to be the “world’s number one Pure Play MEMS Foundry”, has worked with AMFitzgerald&Assoc. on RocketMEMS shuttle wafers to reduce MEMS development time by 6-12 months, and has developed multiple Through-Silicon Via (TSV) technologies to allow for efficient 3D integration of MEMS and CMOS.

Almost lost as a footnote in the news is that Silex holds IP on lead-zirconium-titanate (PZT) thin-film technology that allows for efficient piezo-electric energy-harvesting chips. MicroGen Systems is currently in the market with aluminum-nitride (AlN) piezo-cantilever micro-power generator system to power IoT nodes by scavenging either single-frequency or multi-frequency vibrations, working with X-Fab in Germany as foundry partner. If PZT-based piezo-cantilever energy harvesters can compete with AlN-based devices then the former could constitute much of the product volume in the new Silex Beijing fab. In 2014, Yole Developpement forecast “the integration of IoT-dedicated electronic components to result in a market volume of 2B units for these devices by 2021;” if 30% will use energy harvesting then this represents 600M units globally.