In addition thermal TSV will likely be needed to carry heat directly to the heat spreader as shown below.
Jerry Bartley of IBM 3D opportunities and prerequisites to deployment. Bartley gave the following standard IBM list as 3D IC advantages:
Bartley sees an evolutionary path whereby the via diameter, via pitch, number of layers, complexity of the layers, will systematically improve with time. As we have repeatedly said here at IFTLE, Bartley sees “â??¦3D adoption within any application will happen as the technical risks are mitigated and clear cost and performance advantages emerge”
In agreement with Intels Karnik, Bartley points towards to thermal awareness as a necessary prerequisite for 3D design as shown below.
Bartley sees 3D optimization requiring “3D thinking and system level thought processes” and lastly asks the question that a lot of us are struggling with “Is it a chip or a package ?”
Andrew Kahng of UC San Diego reviewed IRTS technology working groups which are involved with 3D technology. IFTLE has recently reviewed the same material [ see IFTLE 16, "The 2009 ITRS Roadmap.."] As an example of some of the things being looked at Kahng pointed to the prober challenges we are expected to see after 2013.

Paul Franzon from North Carolina State discussed he design of 3D systems. Franzon also identified memory on logic as a key driver for TSV based 3D architecture with examples such as high end mobile graphics synthetic aperture radar. When examining the advantages of 2D vs 3D for the synthetic aperture radar application we can see that 3D has significant advantage.
Muhannad Bakhir from Ga Tech focused on liquid cooling for high performance 3D systems. While the thermal impact of micro channel cooling can be significant, the space occupied by the liquid cooling channels is not insignificant and will limit the thinness of the strata.
For all the latest information on 3D IC and advanced packaging stay linked to Insights From the Leading Edgeâ??¦â??¦.