Semiconductors and healthcare converging


Pete Singer, Editor-in-Chief

Semiconductor technology is increasingly being implemented in a variety of healthcare applications.

At the recent imec International Technology Forum Press Gathering in Leuven, Belgium, imec CEO Luc Van den hove outlined uses in blood cell sorting, mobile apps for personalized medicine (such as brain monitoring of EEG activity), and advanced bio research.

"The cost of healthcare is exploding," he said, noting that one in three people will develop diabetes in their lifetime. It is estimated that the cost of treating diabetes patients will exceed $500 billion 20 years from now (for U.S. and Europe).

CMOS chip with a matrix of micronails with various dimensions, packaged in a dish suitable for cell cultures.

CMOS chip with a matrix of micronails with various dimensions, packaged in a dish suitable for cell cultures.

Van den hove believes the healthcare system will soon see the kind of evolution of that the semiconductor industry has witnessed. "We have created this fabulous revolution in compute power. We went from mainframe to desktop type systems to a computer in our pocket that is more powerful than a mainframe computer we were using 20 years ago. We're convinced that we will see a similar revolution in the domain of medical diagnostics," said Van den hove. "We are clearly at a turning point and we will go from these very sophisticated clinical labs with big medical analysis tools to tools that will be implemented on a doctor's desk, eventually to tools we will be using in our homes which are add-ons to our smart phones, which will allow us to do part of the analysis at home. We are convinced that if you combine the capabilities of semiconductor technology with the know-how that is available in the medical profession, we can come up with solutions that are more sustainable."

One cornerstone of such a medical system will be early diagnostics. One example is the early detection of cancer cells in blood. "Typically today, when you have a primary tumor, it will spread out tumor cells that will circulate through the blood and will create secondary tumors that are usually the more fatal ones. If we can find a way to detect those circulating those tumor cells in the blood in an easy way, then we can come up with a way to detect cancer at an early stage," Van den hove said.

The challenge is huge: one has to have the ability to detect one bad tumor cell in 5 billion blood cells. This equate to a requirement to detect 20 million cells per second. "This is a real challenge, but the parallelism that can be realized with semiconductor technology is a tremendous opportunity. We can fabricate thousands of those parallel circuits on one device. This will allow us to create this kind of sensitivity," he said. "The system we are building here is a combination of very sophisticated microfluidics, electronics and very sophisticated on-chip imaging. We also require a lot of compute power because we have to analyze 20 million images per second. It will become possible to realize these kinds of detection systems."

The second pillar of a sustainable healthcare system, according to imec, is mobile diagnostics that will allow patients to be monitored in their homes and also better access to healthcare in places that are difficult to reach. A third pillar of such a sustainable healthcare system will be personalized therapy which could lead to the discover of cures of illnesses that are now uncurable.

Solid State Technology | Volume 55 | Issue 9 | November 2012