Issue



SensorsCon highlights


05/01/2012







SensorsCon 2012 was held March 21 at the Santa Clara TechMart Center, in conjunction with the annual meeting of the International Society for Quality Electronic Design (ISQED).


The opening keynote talk was presented by Janusz Bryzek, VP MEMS and Sensor Development at Fairchild Semiconductor, speaking on the emergence of a trillion dollar http://www.electroiq.com/mems.html">micro electro mechanical system (MEMS) sensor market. The next generation of Nintendo Wii game controllers will reportedly each contain ~100 MEMS devices to connect gamers with the real world. The MEMS market has reached ~$10 billion, with a 14% 5-year compound annual growth rate (CAGR) -- expected to increase to over 50% as new market opportunities are proven. Acceleration of the MEMS R&D cycle will be aided by the development of better software design tools and by the adoption of uniform unit processes.


The much-touted Internet of Things (IoT) would require that internet data transfer capacity grow 1,000x by 2013, to support all of the proposed sensor applications. The ARM Flycatcher, a 1mm2 microcontroller with an average selling price (ASP) of $0.20, is being promoted as the world's most energy-efficient computer and is targeted at supporting interconnectivity for the IoT.


By 2015, 30% of smart phones are expected to contain a mobile health app, and effectively all smartphones will by 2020. A breath alcohol analyzer app is already on the market for $79. Mobile personal health diagnostics is expected to be a $50B market by 2021.


Kevin Shaw, CTO at Sensor Platforms, talked about the myriad ways in which we already interact with sensors every day. Apple's voice-recognition software Siri represents a high-level integrated sensor system from the automatic activation when you lift the iPhone to your ear to the location-specific speech parsing to interpret and respond to your questions.


Paul Berenberg of Cubic Global Tracking Solutions spoke on the application of wireless sensor networks to logistics issues, including the thorny security issue of bulk cargo containers. Current systems allow tracking only when they pass through designated reader checkpoints. Real-time continuous container tracking requires a highly reliable secure network with extended battery life regardless of environmental conditions. Such a system uniquely requires a high tolerance for signal congestion, as when many containers are loaded on one ship. The current ceiling seems to be ~10k nodes per network, which is not adequate for large-scale logistics implementation. By the end of this century, global population is predicted to be 10 billion people, each with 100 connections to the IoT.


Terry O'Shea of Intel Labs took us to the edge of the cloud, where he defines Perceptive Edge as the use of untapped capability to interact with our immediate surroundings through sensors connected via cloud computing. Intel's rapid prototyping platform consists of a suite of modular sensing applications based on existing FCC-approved protocols in conjunction with different physical-sense capabilities. Home energy monitoring can be accomplished with a power line sensor that fingerprints the on/off signature of each household appliance using fast Fourier transform analysis of the power spike it creates. DHS commissioned an airport monitor to sense CO, CO2, NH3 and EtOH that was unexpectedly prone to false positives due to the alcohol content of now-ubiquitous hand sanitizers. Terry's suggestion regarding IoT is to invest in batteries, rather than routers and electronics, because someone is going to have to change a lot of batteries for all of the IoT sensors.


Solid State Technology, Volume 55, Issue 4, May 2012


More Solid State Technology Current Issue Articles

More Solid State Technology Archives Issue Articles