Tag Archives: 5G

The ConFab Preview

The agenda is set for The ConFab, to be held May 14-17, 2017 in San Diego at the iconic Hotel del Coronado. While reviewing the abstracts for just the Monday morning session, it struck me how well our speakers will cover the complex opportunities and challenges facing the semiconductor industry.

In the opening keynote, for example, Hans Stork, Senior Vice President and Chief Technical Officer, ON Semiconductor we will discuss the challenge to realize high signal to noise ratio in small (read inexpensive) and efficient form factors, using examples of image sensors and power conversion in automotive applications. “It seems that at last, after many decades of exponential progress in logic and memory technologies, the “real world” devices of power handling and sensor functions are jointly enabling another wave of electronics progress in autonomously operating and interacting Things,” he said.

Next, Subramani Kengeri, Vice President of CMOS Platforms Business Unit, GLOBALFOUNDRIES, will describe how the rapid growth of applications in the consumer, auto and mobile space coupled with the emergence of the Internet of Things (IoT) is driving the need for differentiated design and technology solutions. “While die-cost scaling is slowing down and power density is emerging as a major challenge, fabless semiconductor companies are hungry for innovation using application optimized technology solutions. Specifically, emerging SoC innovations are driving the need for low-power, performance, cost, and time-to-volume that solves the issues of voltage scaling and integration of “user-experience” functions,” he notes.

Islam Salama, a Director with Intel Corporation responsible for packaging substrate Pathfinding of the high-density interconnect across all Intel products, looks at it from a connectivity perspective. “The pervasive nature of computing drives a need for connecting billions of people and tens of billions of devices/things via cloud computing. Such connectivity effect will generate tremendous amounts of data and would require a revolutionary change in the technology infrastructures being used to transmit, store and analyze data,” he said.

Next-generation electronics will require several new packaging solutions, he adds. Smaller form factors, lower power consumption, flexible designs, increased memory performance, and-more than ever, a closely managed silicon package, co-optimization and architectural innovations. Heterogeneous integration through package with technologies such as system in package (SIP), on package integration (OPI) and fan-out (WLFO and PLFO) are poised to change the packaging industry and play a disruptive role in enabling next generation devices.

Heterogeneous Integration is also the focus of a talk by Bill Bottoms, Chairman and CEO, Third Millennium Test Solutions. Bill will report on the collaboration in the making of the HIR Roadmap to address disruptive changes in the global IT network, the explosive growth coming for IoT sensors and the multi-sensor fusion and data analytics that extract “awareness” from the expanding data.

I’m very much looking forward to these and many other talks this year, and the exciting panel discussions and networking events we have planned.

IoT, Healthcare and 5G to Drive RF and Microwave

Imagine the world in 2020, only five years from now. If predictions hold true, more than 50 billion devices will be connected to the Internet (creating the Internet of Things), through smart homes, smart cities, smart factories, smart everything. Two recent Cisco studies show there’s $19 trillion in IoT value is at stake in the private ($14.4 trillion) and public ($4.6 trillion) sectors. The studies see, for example, $2.5 trillion in value from better use of assets, improving execution and capital efficiency, and reducing expenses and cost of goods sold. In 2020, cars could be driving themselves and people could be monitoring their health through a variety of smartwatches and other wearables. And, of course, smartphones will continue to proliferate.

5G could also become a reality as early as 2020 (some estimate it will be later, perhaps 2025). Carriers’ base stations can handle hundreds of simultaneous users now, but that’s not enough to accommodate the billions of new devices that will hook into the Internet of Things. Some estimate that equipment makers will need to increase base station connectivity capacity by a factor of 1,000.

RF and microwave electronics are also becoming more valuable. Consider RF chips in smartphones. Instead of 30-40 cents for RF chips in a 2G phone, chipmakers will see $2 to $3 in a lower-end 3G smartphone. It then rises to $4 to $6 for a mid-tier LTE smartphone and $10-plus for high-end global LTE smartphones. No estimate yet on 5G smartphones, but it’s sure to be more.

These trends are good news for everyone involved in technologies associated with RF, microwave, millimeter wave, and THz frequencies, many of whom will be attending “Microwave Week” in Phoenix, May 17-22.  Besides the flagship IEEE MTT-S International Microwave Symposium (IMS), Microwave Week also hosts the IEEE RFIC and ARFTG conferences.

Microwave Week 2015 will start with RFIC Symposium, and followed by IMS Symposium, Microwave Historical Exhibit and ARFTG Microwave Measurement Conference.

The RFIC Symposium kicks off Sunday evening with the awards ceremony followed by two plenary speakers: Dr. Peter H. Siegel from Jet Propulsion Laboratories will talk on “From THz Imaging to Millimeter-Wave Stimulation of Neurons: Is there a Killer Application for High Frequency RF in the Medical Community?” He’ll be followed by a talk by Dr. Hermann Eul of Intel titled “RF as the Differentiator.”

On Monday at the IMS Symposium, University of Illinois’ Swanlund Chair Professor John Rogers will deliver the plenary session address. This kicks off a week of more than 160 technical sessions that indicate industry growth at the intersection of RF and microwave technologies with health.

Dr. Rogers’ opening keynote, “Soft Assemblies of Radios, Sensors and Circuits for the Skin,” will focus on the experimental and theoretical approaches for using soft materials, ultrathin micro/nanostructures and controlled processes of mechanical buckling to achieve ultralow modulus systems of semiconductor devices. The resulting skin-like technology has the potential to provide clinical-quality health monitoring capabilities for use outside of traditional hospital settings and laboratory facilities.

“Rogers sets the precedent for bridging the gap between research and real-world application,” said Vijay Nair, IMS symposium general chair. “His expertise allows him to provide deep insight into how technological innovation can result in significant opportunities for the microwave industry and for society as a whole.”

Closing IMS2015 on Thursday, May 21 is Agilent Technologies’ Chief Technology Officer and Senior Vice President Dr. Darlene Solomon, who will present her vision for how breakthroughs in cellular biology will enable advances in biology-based engineering in her talk, “The Century of Biology is Great for Engineering.”

“Solomon’s holistic approach to the application of technology to address societal issues offers a unique perspective to illustrate the great opportunities ahead for RF and microwave engineers,” said Nair.

The focus of the ARFTG 85th Microwave Measurement Conference; Automatic RF Techniques Group (ARFTG) on May 22nd, will be “Measurements and Techniques for 5G Applications.”