Tag Archives: Intel

The New Driver for Semiconductor Tech

Over the past 40 years, the electronics industry has gone through three distinct stage or “waves” of evolution. Last year, in a Solid State Technology webcast presentation, Intel’s Islam Salama described the waves and how the latest wave is driving the semiconductor industry in new and very different ways. Dr. Salama is responsible for packaging substrate pathfinding of high density interconnects across all Intel products. His team focuses on packaging substrate architectures, process and materials technology building blocks, intellectual property management, and manufacturing ecosystem development.

The first wave occurred in the 1990s, driven mainly by personal computers and enterprise servers. The 2000s saw the very wide adoption of smartphones and cellular phones. “This really provided a very solid platform for industry growth, Salama said.

But today, a major shift is under way. “Starting in 2010, we started to see a generational shift in the IT architecture. This shift is really reshaping every aspect of our economy and industry, and defining the opportunities that are available for growing the industry moving forward,” he said. This shift – you guessed it – is driven smart devices, cloud computing and the IoT.

“As we experience pervasive computing behavior, we demand consistency and seamless interface among all our devices as we use them throughout the day,” Salama said. “It becomes a cycle. The more pervasive computing becomes, the more demand there is on the cloud and the data center.  In the process, you create new application and you try to come up with new devices that keep up with the applications, and the cycle feeds on itself.”

The IoT will bring an explosion of data.

The IoT will bring an explosion of data.

Big and small data being generated by the IoT and smartphones is seen as the next big disrupter. In Wave 2 (the 2000s), PCs generated 90 MB/day and smartphones 30MB/day. In Wave 3, the numbers jump dramatically. A connected car, for example, will generate 4TB of data/day, a connected plane, 40TB/Day and a connected factory 1 PB/Day (petabyte (PB) is 1015 bytes of data).

“Such an explosion of data, driven by our behavior as consumers and the emergence of new applications, will really challenge the infrastructure of the entire network as we know it today,” Salama said.

For example, all the sophisticated data analytics that are performed today at the data center need to be pushed downstream. This is particularly true for applications that will become very sensitive to data latency, for example, such as autonomous driving or connected hospitals.

“This is really shaping the future to be concentric around big data, and this is the main reason why data is being viewed today in the industry as the next disruptor and the engine for driving the semiconductor and the information and computing technology moving forward,” Salama said.

No technical barriers seen for 450mm

Paul Farrar, general manager of the G450C consortium, said early work has demonstrated good results and that he sees no real barriers to implementing 450mm wafers from a technical standpoint. Speaking at the SEMI ISS meeting in January, Farrar showed impressive results from, etch, CVD, PVD, CMP, furnaces, electroplating, wet cleans and lithography processes and said the inspection/metrology tools were in place to measure results. “I don’t believe we will find fundamental technology limiters,” he said. “But we will have to keep working to find ways to maximize the efficiency.” Gaining such efficiencies are critical in order to meet the cost-saving goals of the program. “In the end, if this isn’t cheaper, no one is going to do it,” he said.

G450C is a consortium based at the CNSE campus in Albany, NY. It is financed by Intel, TSMC, Samsung, IBM, GLOBALFOUNDRIES, and New York State (CNSE). “Our job is to make it as easy as possible to innovation and be collaborative between the semiconductor makers and our key friends in the industry who enable the 450 work to be done in an economic way,” Farrar said.

At the end of 2013, G450C at 34 tools delivered to its 50,000ft2 fab in Albany, with another 7 tools in place at partner’s facilities. “The FOUPS are going, the overhead transport is well underway and some of the cleanroom is actually starting to look like a cleanroom,” Farrar said.

FarrarISS_F3

Farrar started with etch results, saying they were “starting to see some pretty good data – 3 sigma at about 2%. Yes, there’s still some work to get to the very edge of the wafer but relatively good progress and good jobs on gas delivery, etc.

FarrarISS_F6

He showed good results with both oxide and silicon nitride CVD, with close to 1.5mm edge exclusion. “It’s very representation data from early in the program,” Farrar said, noting that they were starting to pattern some of the more complex oxides.

FarrarISS_F7

He said the goal for PVD was to demonstrate better than 5% uniformity. “We know we have step coverage challenges for both the 10 and 7nm nodes. There’s tremendous work going on in the injection rings for gases, high density plasmas from multiple RF sources, but again some progress to me made but pretty good data for right out of the chute,” he said.

FarrarISS_F8

CMP results demonstrated repeatability less than 4%. “Very good job done by our suppliers,” Farrar said.

FarrarISS_F9

Farrar described data from furnaces as reasonably good. “We still need to do more characterization at what I call the micro level,” he said. “We see some hot spots on the edge, but we’re starting to work on those.”

FarrarISS_F10

Also “pretty good data” from electrochemical plating (ECP) of copper. “Well done here,” Farrar said. “The challenge is thermal and pattern loading effects, and gap fill.”

FarrarISS_F11

More of the same with wet cleans. “We’re starting to see some pretty good particle data. We’re cleaning wafers relatively well. We are seeing a few things like what I would call micro-metallic contamination that can grow some things so we’re still working on that. But from a particle removal standpoint, pretty good unit process work,” Farrar said.

FarrarISS_F12

Farrar acknowledged that lithography remained as one of the biggest challenges in the 450mm transition, but showed good results from directed self assembly across a 450mm wafer, and said the consortium had a very strong partnership with Nikon. “We’re working with them and we’ve seen some tremendous progress at their factory,” he said. “I’m fully confident that we’ll have capability by July to run patterned wafers. Immersion is going to be the workhorse. I think that’s a key enabler to get to 450mm.” He said the industry would have to see how the economics of EUV played out later in time. “I don’t think it’s going to be early in time,” he said.

FarrarISS_F13FarrarISS_F14

Farrar seemed to draw hope from the earlier transition from 200mm to 300mm wafers, which started around 1998.  “By 2008, we were getting more than 2X the number of wafers per tool out compared to what was going in 2003. There was about a 70% improvement over 5 years,” he said.