“Dry” (plasma) etching is used for circuit-defining steps, while “wet” etching (using chemical baths) is used mainly to clean wafers. Dry etching is one of the most frequently used processes in semiconductor manufacturing. Before etching begins, a wafer is coated with photoresist or a hard mask (usually oxide or nitride) and exposed to a circuit pattern during photolithography. Etching removes material only from the pattern traces. This sequence of patterning and etching is repeated multiple times during the chip making process.

Etch processes are referred to as conductor etch, dielectric etch, or polysilicon etch to indicate the types of films they are remove from the wafer. For example, dielectric etch is involved when an oxide layer is etched to leave “oxide isolators” separating devices from each other; polysilicon etch is used to create the gate in a transistor; dielectric etch is employed to etch via holes and trenches for metal conductive paths; and metal etch removes aluminum, tungsten, or copper layers to reveal the pattern of circuitry at progressively higher levels of the device structure.

Plasma etching is performed by applying electromagnetic energy [typically radio frequency (RF)] to a gas containing a chemically reactive element, such as fluorine or chlorine. The plasma releases positively charged ions that bombard the wafer to remove (etch) materials and chemically reactive free radicals that react with the etched material to form volatile or nonvolatile byproducts. The electric charge of the ions directs them vertically toward the wafer. This produces the almost vertical etch profiles essential for the miniscule features in today’s densely packed chip designs. Typically, high etch rates (amount of material removed in a given time) are desirable.

Process chemistries differ depending on the types of films to be etched. Those used in dielectric etch applications are typically fluorine-based. Silicon and metal etch use chlorine-based chemistries. A specific etch step may be performed on one or more film layers. When multiple layers are involved and also when the etch process must stop precisely on a particular layer without damaging it, the selectivity of the process becomes important. Selectivity is the ratio of two etch rates: the rate for the layer to be removed and the rate for the layer to be protected (e.g. mask or stop layer). Higher selectivities are usually desirable.

In reactive ion etching (RIE), described above, the objective is to optimize the balance between physical and chemical etching such that physical bombardment (etch rate) is sufficient to remove the requisite material while appropriate chemical reactions occur to form either easily exhausted volatile byproducts or protective deposits on the remainder (selectivity and profile control). Magnetically enhanced RIE can aid processing by increasing ion density without increasing ion energy (which can damage the wafer).

Ideally, the etch rate is the same (uniform) at all points on a wafer. The degree to which it might vary at different points on the wafer is known as non-uniformity (or microloading) and is usually expressed as a percentage. Minimizing non-uniformity and microloading are important objectives in etching.

Source: Applied Materials

Additional Reading

Moving atomic layer etch from lab to fab

ARTICLES



Global semiconductor wafer-level equipment revenue to grow 11% in 2016

04/20/2017  Worldwide semiconductor wafer-level manufacturing equipment (WFE) revenue totaled $37.4 billion in 2016, an 11.3 percent increase from 2015, according to final results by Gartner, Inc.

3D-Micromac receives large volume orders from solar industry for its microCELL TLS system

04/18/2017  3D-Micromac AG today announced that the total received order volume for its microCELL TLS high-throughput half-cell cutting tools tops 1.5 GW for tool deliveries in 2017 to date.

EVG breaks speed and accuracy barrier in mask alignment lithography for semiconductor packaging

03/08/2017  New IQ Aligner NT achieves double throughput and alignment accuracy over previous-generation platform; opens up new applications for EVG lithography solutions.

Record spending for fab equipment expected in 2017 and 2018

03/07/2017  Today, SEMI announced updates to its World Fab Forecast report, revealing that fab equipment spending is expected to reach an industry all-time record − more than US$46 billion in 2017.

Global MEMS manufacturer selects ULVAC Technologies' plasma ashing system

03/01/2017  ULVAC Technologies, Inc. has been selected by a global MEMS inertial sensor manufacturer to deliver an ULVAC ENVIRO-1Xa advanced plasma ashing system for running critical low-temp descum processes and high-temp bulk photoresist strip processes.

ClassOne initiative aims to reduce CoO in ≤200mm copper plating

02/22/2017  ClassOne Technology announced a new company-wide initiative to reduce costs of operation (CoO) in copper plating processes.

SEMI appoints Ajit Manocha as president and CEO

02/21/2017  SEMI today announced the appointment of Ajit Manocha as its president and CEO.

Executive viewpoints: 2017 outlook

01/25/2017  Each year, Solid State Technology turns to industry leaders to hear viewpoints on the technological and economic outlook for the upcoming year. Read through these expert opinions on what to expect in 2017.

North American semiconductor equipment industry posts November 2016 book-to-bill ratio of 0.96

12/16/2016  A book-to-bill of 0.96 means that $96 worth of orders were received for every $100 of product billed for the month.

Murphy, Choh and Pilla join ClassOne Technology's Board of Advisors

12/01/2016  ClassOne Technology, manufacturer of advanced wet processing equipment for ≤200mm substrates, announced the formation of a Board of Advisors.

Managing particle flows in process exhaust for safety and profitability

10/28/2016  Solid particles in the abatement exhaust must be properly managed, and in some cases, substantially reduced from the gas stream before it is released into the environment.

Lam Research introduces dielectric atomic layer etching capability for advanced logic

09/07/2016  Lam Research Corp., an advanced manufacturer of semiconductor equipment, today announced that it is expanding its atomic layer etching (ALE) portfolio with the addition of ALE capability on its Flex dielectric etch systems.