Imec, KU Leuven and NERF combine electronics and photonics in neural probes

At last week’s IEEE International Electron Devices Meeting 2015, nanoelectronics research center imec, KU Leuven, and Neuro-Electronics Research Flanders (NERF, set up by VIB/KU Leuven and imec) presented a set of silicon neural probes that combine 12 monolithically integrated optrodes using a CMOS compatible process. The probes enable optical stimulation and electronic detection of individual neurons, based on optogenetics techniques. They pave the way to a greater understanding of the brain and towards novel treatments for brain disorders such as Alzheimer’s, schizophrenia, autism, and epilepsy.

The enormous burden that brain disorders pose on affected individuals and health care systems calls for new ways to prevent, treat and cure these diseases. Currently available devices for recording neural activity to study the functioning of the brain typically have a limited number of electrical channels. Additionally, the brain is composed of many genetically and functionally distinct neuron types, and conventional probes cannot disambiguate recorded electrical signals with respect to their source. Imec’s and KU Leuven’s novel neural probes tackle these challenges, set a path towards greater understanding of the brain, and enable novel treatment options for brain disorders.

Imec’s and KU Leuven’s novel probes combine electronics and photonics to perform extremely sensitive measurements. The fully integrated implantable neural microsystems have advanced capabilities to detect, process and interpret neural data at a cellular scale. The systems feature a very high density of electrodes and nanophotonic circuits (optrodes). Such optrodes are used to optically stimulate single neurons using optogenetics, a technology in which neurons are genetically modified to make them light-sensitive and thus susceptible to stimulation through light pulses.

This research is supported by the Agency for Innovation by Science and Technology in Flanders (IWT) through the OptoBrain project.

Probe tip with activated light output

Probe tip with activated light output

POST A COMMENT

Easily post a comment below using your Linkedin, Twitter, Google or Facebook account. Comments won't automatically be posted to your social media accounts unless you select to share.

Leave a Reply

Your email address will not be published. Required fields are marked *

NEW PRODUCTS

Introducing Semiconductor Digest
04/30/2019Semiconductor Digest is a new magazine dedicated to the worldwide semiconductor industry...
KLA-Tencor announces new defect inspection systems
07/12/2018KLA-Tencor Corporation announced two new defect inspection products at SEMICON West this week, addressing two key challenges in tool and process monit...
3D-Micromac unveils laser-based high-volume sample preparation solution for semiconductor failure analysis
07/09/2018microPREP 2.0 provides order of magnitude time and cost savings compared to traditional sample...