Equipment spending up: 19 new fabs and lines to start construction

Today, SEMI announced that 19 new fabs and lines are forecasted to begin construction in 2016 and 2017, according to the latest update of the SEMI World Fab Forecast report. While semiconductor fab equipment spending is off to a slow start in 2016, it is expected to gain momentum through the end of the year. For 2016, 1.5 percent growth over 2015 is expected while 13 percent growth is forecast in 2017.

Fab equipment spending ─ including new, secondary, and in-house ─ was down 2 percent in 2015. However, activity in the 3D NAND, 10nm Logic, and Foundry segments is expected to push equipment spending up to US$36 billion in 2016, 1.5 percent over 2015, and to $40.7 billion in 2017, up 13 percent. Equipment will be purchased for existing fabs, lines that are being converted to leading-edge technology, as well as equipment going into new fabs and lines that began construction in the prior year.

Table 1 shows the regions where new fabs and lines are expected to be built in 2016 and 2017. These projects have a probability of 60 percent or higher, according to SEMI’s data. While some projects are already underway, others may be subject to delays or pushed into the following year. The SEMI World Fab Forecast report, published May 31, 2016, provides more details about the construction boom.

new fab lines

Breaking down the 19 projects by wafer size, 12 of the fabs and lines are for 300mm (12-inch), four for 200mm, and three LED fabs (150mm, 100mm, and 50mm). Not including LEDs, the potential installed capacity of all these fabs and lines is estimated at almost 210,000 wafer starts per month (in 300mm equivalents) for fabs beginning construction in 2016 and 330,000 wafer starts per month (in 300mm equivalents) for fabs beginning construction in 2017.

In addition to announced and planned new fabs and lines, SEMI’s World Fab Forecast provides information about existing fabs and lines with associated construction spending, e.g. when a cleanroom is converted to a larger wafer size or a different product type.

In addition, the transition to leading-edge technologies (as we can see in planar technologies, but also in 3D technologies) creates a reduction in installed capacity within an existing fab. To compensate for this reduction, more conversions of older fabs may take place, but also additional new fabs and lines may begin construction.

For insight into semiconductor manufacturing in 2016 and 2017 with details about capex for construction projects, fab equipping, technology levels, and products, visit the SEMI Fab Database webpage and order the SEMI World Fab Forecast Report. The report, in Excel format, tracks spending and capacities for over 1,100 facilities including over 60 future facilities, across industry segments from Analog, Power, Logic, MPU, Memory, and Foundry to MEMS and LEDs facilities.

POST A COMMENT

Easily post a comment below using your Linkedin, Twitter, Google or Facebook account. Comments won't automatically be posted to your social media accounts unless you select to share.

Leave a Reply

Your email address will not be published. Required fields are marked *

NEW PRODUCTS

KLA-Tencor announces new defect inspection systems
07/12/2018KLA-Tencor Corporation announced two new defect inspection products at SEMICON West this week, addressing two key challenges in tool and process monit...
3D-Micromac unveils laser-based high-volume sample preparation solution for semiconductor failure analysis
07/09/2018microPREP 2.0 provides order of magnitude time and cost savings compared to traditional sample...
Leak check semiconductor process chambers quickly and reliably
02/08/2018INFICON,a manufacturer of leak test equipment, introduced the UL3000 Fab leak detector for semiconductor manufacturing maintenance teams t...