Energy harvesting semiconductor content to approach $3.4B by 2022, says Semico Research

The term energy harvesting, also known as power scavenging, is used to describe the creation of energy derived from a variety of external sources such as solar power, thermal energy, wind energy, kinetic energy or electromagnetic sources. Energy harvesters accumulate the wasted energy in a system, such as heat given off by motors or semiconductors, or the vibrations of motors or other moving objects. The basic technologies for generating energy are: mechanical vibration (kinetic energy), thermoelectric, solar (photovoltaic), and RF/Inductive.  A new research report from Semico Research Energy Harvesting: Reaping the Abundant Market, estimates that the semiconductor content for energy harvesting solutions will explode to $3.4 billion by 2022.

“While there is a great deal of interest in the different types of energy harvesting devices or energy generators, the greater opportunity for the semiconductor industry is the overall solution which includes power conversion, power management, microcontrollers, radios and MEMS sensors,” says Joanne Itow, Semico’s Manager of Manufacturing Research. “The advent of IoT with remote monitoring and data collection has also prompted more interest in energy harvesting as a viable solution to maintain WSNs (Wireless Sensor Networks).”

Key findings of the report include:

  • The number of devices with an energy harvesting solution will reach 509 million units by 2022.
  • Consumer devices (including toys) with energy harvesting accounted for 8 million units in 2017.
  • Bridges are expected to be a large user of energy harvesting in the infrastructure sector by 2022.
  • Energy harvesting devices in all buildings is expected to have a CAGR of 20.7% by 2022.

In its recent report Energy Harvesting: Reaping the Abundant Market” (MP112-18), Semico Research examines the market opportunity for energy harvesting outside of large solar installations and commercial power generation. A broad range of markets will employ energy harvesting to either replace batteries or extend battery life. These applications cover wireless sensor nodes (WSN) for bridges, infrastructure, building automation and controls, home automation (including lighting, security and environmental), automotive applications, cell phones, wearables and other consumer electronics. The report is 98 pages long and includes 13 tables and 37 figures.

Companies cited in the report include:

Analog Devices, Microchip (Atmel), CHERRY/ZF, Cymbet, Cypress, EnOcean, e-peas, Analog Devices/Linear Technology, Maxim Integrated, Microchip Technology, Powercast, Renesas, Semtech, Silicon Labs, Silicon Reef, STMicroelectronics, Texas Instruments, Ilika, Imprint Energy, Sakti3, Solid Power, Apple, Laird, microGen, Micropelt, Perpetuum, Piezo Systems, Sanyo, Thermo Life, Thermogen Technologies, EH Solution Providers, LORD Microstrain®, National Instruments, Nikola Labs, Phase IV Engineering, Resensys, Soundpower Corp., Eta Compute, Mentor Graphics, and X-FAB.

POST A COMMENT

Easily post a comment below using your Linkedin, Twitter, Google or Facebook account. Comments won't automatically be posted to your social media accounts unless you select to share.

Leave a Reply

Your email address will not be published. Required fields are marked *

NEW PRODUCTS

KLA-Tencor announces new defect inspection systems
07/12/2018KLA-Tencor Corporation announced two new defect inspection products at SEMICON West this week, addressing two key challenges in tool and process monit...
3D-Micromac unveils laser-based high-volume sample preparation solution for semiconductor failure analysis
07/09/2018microPREP 2.0 provides order of magnitude time and cost savings compared to traditional sample...
Leak check semiconductor process chambers quickly and reliably
02/08/2018INFICON,a manufacturer of leak test equipment, introduced the UL3000 Fab leak detector for semiconductor manufacturing maintenance teams t...