MiniLED technologies: An adoption, first driven by high-end LCD displays

The excitement about microLEDs has grown exponentially since Apple acquired technology startup Luxvue in 2014. All major display makers have now invested in the technology and other semiconductor or hardware companies such as Intel, Facebook Oculus or Google have joined the pool. Amidst this flurry of news and activity, a new term emerged in early 2017: miniLED. But more than size, the technology and manufacturing infrastructure requirements and the applications clearly differentiate microLEDs and miniLEDs.

Under this dynamic ecosystem, the market research and strategy consulting company, Yole Développement (Yole), releases a dedicated technology & market analysis focused on miniLEDs for display applications. Entitled, MiniLED for Display Applications: LCD & Digital Signage, this report provides a detailed analysis of miniLED technologies in two major display applications: high performance LCDs and narrow pixel pitch LED direct view display digital signage. Yole’s analysts present a comprehensive understanding of miniLED display technologies and describe their competitive landscapes and supply chains.

MiniLED vs. MicroLED: are they the same technologies? Are the applications identical? Contrary to MicroLEDs, miniLEDs can easily be manufactured in existing fabs, even though they might require new equipment to enable cost-effective assembly. So who is doing what? What are the market drivers? Does a dedicated supply chain already exist? MiniLEDs advantages are two-fold in terms of applications: they bring new strength to LCD players in the battle against OLED, and they enable increased LED adoption for digital signage, announce Yole’s analysts. Discover today a snapshot of the miniLED industry, with insights into technology, current status and prospects, roadblocks and key players.

For smartphone applications, miniLEDs are facing a strong incumbent in OLEDs, as their cost to performance ratio has already gained the technology a strong position in high-end/flagship segments. OLED is expected to further increase its share and become dominant as the number of suppliers and global capacity increase dramatically over the next five years and cost continues to drop.

MiniLEDs, however, have a card to play in various small to mid-size high added-value display segments, where OLEDs have been less efficient at overcoming its weaknesses such as cost, lack of availability and longevity issues such as burn-in or image retention. For example in high-end monitors for gaming applications, miniLEDs could bring excellent contrast, high brightness and thin form factors at lower cost than OLEDs.

“The automotive segment is especially compelling, first because of its strong growth potential in terms of volume and revenue, and also because miniLEDs can deliver on every aspect auto-makers are aspiring to: very high contrast and brightness, lifetime, conformability to curved surfaces and ruggedness,” comments Eric Virey, PhD, Senior Market & Technology Analyst at Yole.

Regarding the last point on ruggedness, miniLED-based LCDs offer significant benefits over OLEDs since they only use proven technologies, LED backlights and liquid crystal cells, not much different from already established LCDs. Automakers therefore don’t have to make a leap of faith and hope the new technology will meet the demanding lifetime, environmental and operating temperature specifications they require.

On the TV side, miniLEDs could help LCDs bridge the gap and regain market share against OLEDs on the highly profitable high-end segments. “This opportunity is all the more enticing to panel and display makers that have not invested in OLED technologies and see the potential to extend the lifetime and profitability of their LCD fabs and technologies,” explains Zine Bouhamri, PhD, Technology & Market Analyst at Yole.

For direct view LED displays, miniLEDs used in conjunction with Chip On Board (COB) architecture could enable higher penetration of narrow pixel pitch LED displays in multiple applications, hence increasing the serviceable market. Die size will evolve continuously toward smaller dimensions, possibly down to 30-50µm in order to reduce cost. Adoption in cinema is still highly uncertain but even modest adoption rates would generate very significant upsides.

POST A COMMENT

Easily post a comment below using your Linkedin, Twitter, Google or Facebook account. Comments won't automatically be posted to your social media accounts unless you select to share.

Leave a Reply

Your email address will not be published. Required fields are marked *

NEW PRODUCTS

KLA-Tencor announces new defect inspection systems
07/12/2018KLA-Tencor Corporation announced two new defect inspection products at SEMICON West this week, addressing two key challenges in tool and process monit...
3D-Micromac unveils laser-based high-volume sample preparation solution for semiconductor failure analysis
07/09/2018microPREP 2.0 provides order of magnitude time and cost savings compared to traditional sample...
Leak check semiconductor process chambers quickly and reliably
02/08/2018INFICON,a manufacturer of leak test equipment, introduced the UL3000 Fab leak detector for semiconductor manufacturing maintenance teams t...