Driven by Apple and Samsung, light sensors achieve double-digit revenue growth

Light and proximity sensors in mobile handsets and tablets are set for expansive double-digit growth within a five-year period, thanks to increasing usage by electronic giants Samsung and Apple. Light and proximity sensors can detect a user’s presence as well as help optimize display brightness and color rendering.

Revenue for the sensors is forecast to reach $782.2 million this year, up a prominent 41 percent from $555.1 million in 2012, according to insights from the MEMS and Sensors Service at information and analytics provider IHS. The market is also expected to grow in the double digits for the next three years before moderating to a still-robust eight percent in 2017. By then, revenue will reach $1.3 billion, as shown in the figure below.

“The continued growth of the smartphone and tablet markets serve as the foundation of a bright future for light sensors,” said Marwan Boustany, senior analyst for MEMS & sensors at IHS. “Market leaders in these areas are driving the growth, with Apple pioneering their adoption and Samsung later taking the lead in their usage.”

Sensor segments

There are three types of light and proximity sensors: ambient light sensors (ALS) that measure the intensity of the surrounding light enveloping a cellphone or tablet to adjust screen brightness and save battery power; RGB sensors that measure a room’s color temperature via the red, green and blue wavelengths of light to help correct white balance in the device display; and proximity sensors that disable a handset’s touch screen when it is held close to the head, in order to avoid unwanted input, and also to turn off the light in the display to save battery power.

Overall, the compound annual growth rate for the sensors from 2012 to 2017 equates to 19 percent.

Driving this growth is the shift in use from ALS to RGB in mid- to high-end smartphones; the growing deployment of proximity sensors with gesture capabilities compared to just simple proximity sensors; and the price premiums associated with such changes in usage.

Aside from their most conspicuous use in wireless communications typified by handsets and tablets, light sensors are also utilized in various other applications. These include consumer electronics and data processing for devices like televisions, laptops and PC tablets; the industrial market for home automation, medical electronics and general lighting; and the automotive space for vehicle displays and car functionalities like rain sensors.

Samsung and Apple are leaders in sensor use

Both Samsung and Apple have made use of light and proximity sensors in recent years, helping the sensor market grow in no small measure.

In 2010, Apple included an RGB and proximity sensor for its iPhone 4 and an RGB sensor in its iPad, even though the sensors were subsequently dropped in the iPhone 4S, iPhone 5 and later iPads. Apple let go of the sensors, which were made available at that time in a combination—or combo package—in favor of discrete solutions consisting of individual proximity as well as ALS sensors for its products. While combo sensors offer the convenience of a single configured package and sourcing from a single supplier, discrete solutions can offer flexibility in the choice of sensor.

Samsung, meanwhile, has gone on to use light and proximity sensors in even larger quantities than Apple. Last year Samsung included an RGB, proximity and infrared (IR) combo sensor, for both its Galaxy SIII smartphone and flagship Galaxy Note 2 device that the company termed as a “phablet.” This year, Samsung deployed a discrete RGB sensor in its latest smartphone, the Galaxy S4, switching from a combo package due to lack of availability of a combo sensor with gesture capability. Samsung’s move toward using RGB sensors in its high-end handsets currently sets the tone for the RGB sensor market given Samsung’s high unit sales. Such a move by the South Korean maker is expected to open the door for other brands to also include RGB sensors in their handsets and tablets, IHS believes.

The new gesture functionality, such as that found in the Galaxy S4, will see especially vigorous growth in the years to come, with revenue enjoying an astonishing 44 percent compound annual growth rate from 2013 to 2017. Maxim Integrated Solutions of California provides the discrete gesture solution for the Galaxy S4, but Japan’s Sharp will be producing a combo sensor product with gesture capabilities by September this year.

Sensor suppliers and buyers tussle

Samsung and Apple are the top buyers of light sensors, accounting for more than 50 percent of light sensor revenue last year. Samsung pulled away from Apple after impressive 90 percent growth in sensor purchases between 2011 and 2012, compared to Apple’s 54 percent growth rate of spend during the period.

This is due to Samsung’s shift toward RGB sensors in its Note 2 and SIII devices, which command higher average selling prices. In third place after Samsung and Apple is a collective group of original equipment manufacturers from China. Included here are global players with significant name recognition like Huawei Technologies, ZTE and Lenovo, as well as a multitude of lesser-known companies such as Coolpad and Xiaomi.

Meanwhile, the top sensor suppliers are Austrian-based ams via its Taos unit in Texas, which supplies to Apple; and Capella Microsystems from Taiwan, the top light sensor supplier to Samsung. Together the two manufacturers furnish more than half of the light sensor market. Other important sensor makers are Avago Technologies from California and Sharp from Japan.


Easily post a comment below using your Linkedin, Twitter, Google or Facebook account. Comments won't automatically be posted to your social media accounts unless you select to share.


Electroiq 2 EIQ2


Scrubber developed for POU abatement of wet bench gases

July 18, 2013 DAS Environmental Expert GmbH of Dresden, Germany, has developed SALIX, a point-of-use system for removing waste gas pollutants...

ROFIN presents turnkey solutions for FEOL applications

July 2, 2013 The new laser wafer processing system Waferlase 200/300/450, is a fully automated modular platform comprising a market-leading ...

EV Group launches new LowTemp room temperature debonding platform

July 1, 2013 EV Group, a supplier of wafer bonding and lithography equipment for the MEMS, nanotechnology and semiconductor markets, today i...

All-in-one microscope for advanced imaging, recording and measurement

June 7, 2013

Building on its extensive microscope lineup, KEYENCE Corporation has released a new multipurpose microscope.


MEMS Need Comprehensive, Market-Ready Solutions

Microelectromechanical systems -- commonly known as MEMS -- applications are on the rise. In fact, the MEMS market is currently outpacing overall IC market g...

Rapid Defect Indentification with Layout-Aware Diagnosis

Scan logic diagnosis is a powerful tool to help failure analysis engineers determine the root cause of a failing die. Yield engineers, on the other hand, are...


Surface Cleaning and Preparation

This introduction requires the development of new critical and selective cleans tackling galvanic corrosion, pattern collapse both in FEOL and BEOL...

450mm Status Report

Hear from the G450C General Manager, Paul Farrar Jr., on the current status of activities, key milestones and schedules, and imec’s senior business...

Key trends at Semicon West 2013

Thu Jul 18 15:17:00 CDT 2013

Tackling Design for Yield Questions at DAC

Wed May 22 15:39:00 CDT 2013

Join The ConFab discussion

Tue Feb 26 11:27:00 CST 2013

Questions and answers on FD-SOI

Fri Jan 04 14:56:00 CST 2013

Present your ideas at The ConFab in 2013

Mon Nov 26 09:04:00 CST 2012



Volume 56, Issue 4

Article Archive for Solid State Technology.

© 2013. PennWell Corporation. All Rights Reserved. PRIVACY POLICY | TERMS AND CONDITIONS