Building a better semiconductor

Research led by Michigan State University could someday lead to the development of new and improved semiconductors.

In a paper published in the journal Science Advances, the scientists detailed how they developed a method to change the electronic properties of materials in a way that will more easily allow an electrical current to pass through.

The electrical properties of semiconductors depend on the nature of trace impurities, known as dopants, which when added appropriately to the material will allow for the designing of more efficient solid-state electronics.

The MSU researchers found that by shooting an ultrafast laser pulse into the material, its properties would change as if it had been chemically “doped.” This process is known as “photo-doping.”

“The material we studied is an unconventional semiconductor made of alternating atomically thin layers of metals and insulators,” said Chong-Yu Ruan, an associate professor of physics and astronomy who led the research effort at MSU. “This combination allows many unusual properties, including highly resistive and also superconducting behaviors to emerge, especially when ‘doped.'”

An ultrafast electron-based imaging technique developed by Ruan and his team at MSU allowed the group to observe the changes in the materials. By varying the wavelengths and intensities of the laser pulses, the researchers were able to observe phases with different properties that are captured on the femtosecond timescale. A femtosecond is 1 quadrillionth, or 1 millionth of 1 billionth, of a second.

“The laser pulses act like dopants that temporarily weaken the glue that binds charges and ions together in the materials at a speed that is ultrafast and allow new electronic phases to spontaneously form to engineer new properties,” Ruan said. “Capturing these processes in the act allows us to understand the physical nature of transformations at the most fundamental level.”

Philip Duxbury, a team member and chairperson of the department of physics and astronomy, said ultrafast photo-doping “has potential applications that could lead to the development of next-generation electronic materials and possibly optically controlled switching devices employing undoped semiconductor materials.”

A semiconductor is a substance that conducts electricity under some conditions but not others, making it a good medium for the control of electrical current. They are used in any number of electronics, including computers.

POST A COMMENT

Easily post a comment below using your Linkedin, Twitter, Google or Facebook account. Comments won't automatically be posted to your social media accounts unless you select to share.

Leave a Reply

Your email address will not be published. Required fields are marked *

You may use these HTML tags and attributes: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <s> <strike> <strong>

LIVE NEWS FEED

NEW PRODUCTS

Entegris expands CMP filtration technology solutions and research, analytical and manufacturing capabilities
09/04/2015The Entegris filter platform using NMB media now includes the Planargard bulk, Solaris point...
DCG Systems extends circuit edit capability to the 10nm node with the introduction of OptiFIB Taipan
09/02/2015DCG Systems today announces the release of the OptiFIB Taipan circuit edit solution for the most adv...
SEMI-GAS unveils new custom-engineered ultra high purity liquid push system
09/02/2015The fully automatic system, operated by a GigaGuard PLC controller, features an intuitive 9” color touchscreen and user-def...