World’s thinnest lens to revolutionize cameras

Scientists have created the world’s thinnest lens, one two-thousandth the thickness of a human hair, opening the door to flexible computer displays and a revolution in miniature cameras.

Lead researcher Dr Yuerui (Larry) Lu from The Australian National University (ANU) said the discovery hinged on the remarkable potential of the molybdenum disulphide crystal.

Larry Lu (left), and Jiong Yang with the lens shown on screen. Credit: Stuart Hay, ANU

Larry Lu (left), and Jiong Yang with the lens shown on screen. Credit: Stuart Hay, ANU

“This type of material is the perfect candidate for future flexible displays,” said Dr Lu, leader of Nano-Electro-Mechanical System (NEMS) Laboratory in the ANU Research School of Engineering.

“We will also be able to use arrays of micro lenses to mimic the compound eyes of insects.”

The 6.3-nanometre lens outshines previous ultra-thin flat lenses, made from 50-nanometre thick gold nano-bar arrays, known as a metamaterial.

Molybdenum disulphide is an amazing crystal,” said Dr Lu. “It survives at high temperatures, is a lubricant, a good semiconductor and can emit photons too.

“The capability of manipulating the flow of light in atomic scale opens an exciting avenue towards unprecedented miniaturisation of optical components and the integration of advanced optical functionalities.”

Molybdenum disulphide is in a class of materials known as chalcogenide glasses that have flexible electronic characteristics that have made them popular for high-technology components.

Dr Lu’s team created their lens from a crystal 6.3-nanometres thick - 9 atomic layers - which they had peeled off a larger piece of molybdenum disulphide with sticky tape.

They then created a 10-micron radius lens, using a focussed ion beam to shave off the layers atom by atom, until they had the dome shape of the lens.

The team discovered that single layers of molybdenum disulphide, 0.7 nanometres thick, had remarkable optical properties, appearing to a light beam to be 50 times thicker, at 38 nanometres. This property, known as optical path length, determines the phase of the light and governs interference and diffraction of light as it propagates.

“At the beginning we couldn’t imagine why molybdenum disulphide had such surprising properties,” said Dr Lu.

Collaborator Assistant Professor Zongfu Yu at the University of Wisconsin, Madison, developed a simulation and showed that light was bouncing back and forth many times inside the high refractive index crystal layers before passing through.

Molybdenum disulphide crystal’s refractive index, the property that quantifies the strength of a material’s effect on light, has a high value of 5.5. For comparison, diamond, whose high refractive index causes its sparkle, is only 2.4, and water’s refractive index is 1.3.

This study is published in the Nature serial journal Light: Science and Applications.

POST A COMMENT

Easily post a comment below using your Linkedin, Twitter, Google or Facebook account. Comments won't automatically be posted to your social media accounts unless you select to share.

Leave a Reply

Your email address will not be published. Required fields are marked *

You may use these HTML tags and attributes: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <s> <strike> <strong>

LIVE NEWS FEED

NEW PRODUCTS

Low-outgassing Faraday Isolators to improve lifetime and reliability of optical systems
02/18/2016Qioptiq, an Excelitas Technologies company introduces the LINOS Low-outgassing Faraday Isolators, the first of th...
Versatile high throughput SEM from JEOL
11/04/2015JEOL's new JSM-IT100 is the latest addition to its InTouchScope Series of Scanning Electron Microscopes....
Entegris expands CMP filtration technology solutions and research, analytical and manufacturing capabilities
09/04/2015The Entegris filter platform using NMB media now includes the Planargard bulk, Solaris point...