Tag Archives: 2D

Controlling Polymers to Tune TFTs

Thin-film transistors (TFT) created using only additive process steps could create new low-cost ICs with functionalities beyond silicon, but only if we understand how to control structures at the molecular level. Thin films of conjugated polymers such as poly(3-hexylthiophene) (P3HT) can provide useful conductivity when the electron mobilities are controlled within as well as between molecules. In producing TFTs using such organic macromolecules, we must rigorously control the deposition and annealing processes so that the right molecules line up in the right order.
Peter F. Green, Professor of Chemical Engineering, Macromolecular Science and Engineering at the University of Michigan, and his team fabricated ~55 nm thin films of P3HT using resonant-infrared matrix-assisted pulsed laser evaporation (RIR-MAPLE), as well as conventional spin-casting. The films produced by MAPLE show a higher degree of structural disorder, with localized trap sites that reduce mobility out-of-plane by an order of magnitude compared to spin-cast films.

(Source: Peter Green, University of Michigan)

(Source: Peter Green, University of Michigan)

The Figure shows that despite the disorder of MAPLE-deposited P3HT, enhanced carrier density at the dielectric interface allows TFTs to exhibit similar in-plane mobilities to those built using conventionally spin-coated films. TFTs were top-contact, bottom-gate designs on 300nm thermal oxide on highly doped silicon. In-plane carrier mobilities of MAPLE-deposited versus spin-cast films were 8.3 versus 5.5 (×10 -3 cm2/V/s). In principle, the ability to independently control in- and out-of-plane mobilities allows for the fine tuning of TFT parameters for different applications.
—E.K.

Micro-Buckled 3D Silicon Scaffolds

3Dsilicon_CompressiveBucklingA new silicon microstructural solution announced this month is so powerful in creating 3D patterns from 2D surface machining that I just have to share. The figure shows 3D silicon microstructures formed by compressive buckling. The method can be used to create objects with features as small as 100 nm that could be useful for developing new technologies for medicine, energy storage and even brain-like electronic networks. Note that the silicon is surface-machined using standard MEMS processes, and that all manner of silicon circuitry and thin-film sensors could be integrated into this silicon.

Colleagues from the University of Illinois at Urbana-Champaign, Northwestern University, Zhejiang University, East China University of Science and Technology, and Hanyang University created the new 2D-to-3D fabrication technique. Their trick is that after all other surface machining they chemically modify the square anchors in the surface pattern such that they are sticky. After the 2D pattern is released it is transferred onto a sheet of stretched silicone rubber. Allowing the rubber to relax back to its natural shape draws the squares toward each other, while the rest of the silicon buckles upwards. Using this type of controlled buckling, the team managed to produce a variety of elaborate 3D shapes.

The researchers even produced structures with multiple levels of elevation by designing shapes in which the relief of stress in the initial 2D shape would create further buckling, raising another part of the shape further. John Rogers of the University of Illinois at Urbana-Champaign, who is part of the micro-buckling team looks forward to an electronic cell or tissue scaffold, “A lot of the people that we talk to are enthusiastic about what you can do when you go from a passive scaffold to something that embeds full electronic functionality.”

The research is published in Science.

—E.K.

NanoParticle Self-Assembly at UofM

Theory and Practice synergize R&D

UofM_Glotzer-Kotov_MRS2014awardSharon C. Glotzer and Nicholas A. Kotov are both researchers at the University of Michigan who were just awarded a MRS Medal at the Materials Research Society (MRS) Fall Meeting in San Francisco for their work on “Integration of Computation and Experiment for Discovery and Design of Nanoparticle Self-Assembly.” Due to the fact that surface atoms compose a large percent of the mass of nanoparticles, the functional properties of quasi-1D nanoparticles differ significantly from 2D thin-films and from 3D bulk materials. An example of such a unique functional property is seen in self-assembly of nanoparticles to form complex structures, which could find applications in renewable energy production, optoelectronics, and medical electronics.
While self-assembly has been understood as an emergent property of nanoparticles, research and development (R&D) has been somewhat limited to experimental trial-and-error due to a lack of theory. Glotzer and Kotov along with their colleagues have moved past this limit using a tight collaboration between computational prediction and experimental observation. The computational theorist Glotzer provides modeling on shapes and symmetric structures, while the experimentalist Kotov’s explores areas involving atomic composition and finite interactions. Kotov and his students create a nanoparticle and look for Glotzer and her group to explan the structure. Conversely, Glotzer predicts the formation of certain structures and has those predictions confirmed experimentally by Kotov.
One specific area the two scientists have explored is the formation of supraparticles—agglomerations of tightly packed nanoparticles that are self-limiting in size. The supraparticles are so regular in size and sphericality that they would actually pack to form face-centered-cubic (fcc) lattice-like structures. The theoretical and computational work, followed by experimental verification, further proved that these supraparticles could be formed from a vast variety of nanoparticles and even proteins, provided they were small enough and had significant van der Waals and electronic repulsion forces. This exciting development creates a whole new class of “bionic” materials that may combine biomaterials and inorganics.
—E.K.

IBM Shows Graphene as Epi Template

Last month in Nature Communications (doi:10.1038/ncomms5836) IBM researchers Jeehwan Kim, et al. published “Principle of direct van der Waals epitaxy of single-crystalline films on epitaxial graphene.” They show the ability to grow sheets of graphene on the surface of 100mm-diameter SiC wafers, the further abilitity to grow epitaxial single-crystalline films such as 2.5-μm-thick GaN on the graphene, the even greater ability to then transfer the grown GaN film to any arbitrary substrate, and the complete proof-of-manufacturing-concept of using this to make blue LEDs.

(Source: IBM)

(Source: IBM)

The figure above shows the basic process flow. The graphenized-SiC wafer can be re-used to grow additional transferrable epi layers. This could certainly lead to competition for the Leti/Soitec/ST “SmartCut” approach to layer-transfer using hydrogen implants into epi layers.
No mention is made of the kinetics of growing 100mm-diameter sheets of single-crystalline GaN on graphene. Supplemental information in the online article mentions 1 hour at 1250°C to cover the full wafer, but the thickness grown in that time is not mentioned. From first principles of materials engineering, they must either:

A) Go slow at first to avoid independent islands growing to form a multicrystalline layer, or
B) Initially grow a multicrystalline layer and then zone anneal (perhaps using a scanned laser) to transform it into a single-crystal.
In either case, we would expect that after just a few single-crystalline atomic layers had been either slowly grown or annealed, that a 2nd much-higher speed epi process would be used to grow the remain microns of material. More details can be seen in the EETimes write up.
—E.K.

Moore’s Law is Dead - (Part 4) Why?

We forgot Moore merely meant that IC performance would always improve (Part 4 of 4)

IC marketing must convince customers to design ICs into electronic products. In 1965, when Gordon Moore first told the world that IC component counts would double in each new product generation, the main competition for ICs was discrete chips. Moore needed a marketing tool to convince early customers to commit to using ICs, and the best measure of an IC was simply the component count. When Moore updated his “Law” in 1975 (see Part 1 of this series for more details), ICs had clearly won the battle with discretes for logic and memory functions, but most designs still had only single-digit thousands of transistors so increases in the raw counts still conveyed the idea of better chips.

MooresLaw_1965_graphFor almost 50 years, “Moore’s Law” doubling of component counts was a reasonable proxy for better ICs. Also, if we look at Moore’s original graph from 1965 (right), we see that for a given manufacturing technology generation there is a minimal cost/component at a certain component count. “What`s driven the industry is lower cost,” said Moore in 1997. “The cost of electronics has gone down over a million-fold in this time period, probably ten million-fold, actually. While these other things are important, to me the cost is what has made the technology pervasive.”

Fast forward to today, and we have millions of transistors working in combinations of “standard cell” blocks of pre-defined functionalities at low cost. Graphics Processor Units (GPU) and other Application Specific Integrated Circuits (ASIC) take advantage of billions of components to provide powerful functionalities at low cost. Better ICs today are measured not by mere component counts, but by performance metrics such as graphics rendering speed or FLOPS.

The limits of lithography (detailed in Part 2 of this blog series) mean that further density improvements will be progressively more expensive, and the atomic limits of physical reality (detailed in Part 3) impose a hard-stop on density at ~1000x of today’s leading-edge ICs. “If we say we can`t improve the density anymore because we run up against all these limitations, then we lose that factor and we`re left with increasing the die size,” said Moore in 1997.

Since the cost of an IC is proportional to the die size, and since the cost/area of lithographic patterning is not decreasing with tighter design-rules, increasing the die size will almost certainly increase cost proportionally. We may not need larger dice with more transistors, however, as future markets for ICs may be better served by the same number of transistors integrated with new functionalities.

International R&D center IMEC knows as well as any organization the challenges of pushing lithography and junction-formation and ohmic contacts to atomic limits. In the 2014 Imec Technology Forum, held the first week of June in Brussels, president and chief executive officer Luc Van den hove’s keynote address focused on the applications of ICs into communications, energy, health-care, security, and transportation applications.

TI has been making ICs since they were co-invented by Kilby in 1959, and over a decade ago TI made a conscious decision to stop chasing ever-smaller digital. First it outsourced digital chip fabrication to foundries, and in 2012 began retiring digital communications chips. Without continually shrinking components, how has TI managed to survive? By focusing on design and integration of analog components, in the most recent financial quarter the company posted 58% gross margin on $3.29B in sales.

At The ConFab last month, Dr. Gary Patton, vice president, semiconductor research and development center at IBM, said there is a bright future in microelectronics (as documented at Pete’s Posts blog).

The commercial semiconductor manufacturing industry will see only continued revenue growth in the future. We will process more area of silicon ICs each year, in support of shipping an ever increasing number of chips worldwide. More fabs will be built needing more tools and an increasing number of new materials.

Moreover, next generation chips will be faster or smaller or cheaper or more functional, and so will better serve the needs of new downstream customers. ASICs and 3D heterogeneous chip stacks will create new IC product categories leading to new market opportunities. Personalized health care could be the next revolution in information technologies, requiring far more sensors and communications and memory and logic chips. With a billion components, the possibilities for new designs to create new IC functionalities seems endless.

However, we are past the era when the next chips will be simultaneously faster and smaller and cheaper and more functional. We have to accept the end of Dennard Scaling and the economic limits of optical lithography. Still, we should remember what Gordon Moore meant in 1965 when he first talked about the future of IC manufacturing, because one factor remains the same:

The next generation of commercial IC chips will be better.

Past posts in the blog series:

Moore’s Law is Dead - (Part 1) What defines the end.

Moore’s Law is Dead - (Part 2) When we reach economic limits,

Moore’s Law is Dead - (Part 3) Where we reach atomic limits.

Future posts in this blog will ruminate about new materials, designs, and technologies for next 50 years of IC manufacturing.

E.K.

Moore’s Law is Dead - (Part 3) Where?

…we reach the atomic limits of device scaling.

At ~4nm pitch we run out of room “at the bottom,” after patterning costs explode at 45nm pitch.

Lead bongo player of physics Richard Feynman famously said, “There’s plenty of room at the bottom,” and in 1959 when the IC was invented a semiconductor device was composed of billions of atoms so it seemed that it would always be so. Today, however, we can see the atomic limits of miniaturization on the horizon, and we can start to imagine the smallest possible functioning electronic device.

Today’s leading edge ICs are made using “22nm node” fab technology where the smallest lithographically defined structure—likely a transistor gate—is just 22nm across. However, the pitch between such transistors is ~120nm, because we are already dealing with the resolution limits of lithography using water-immersion 193nm with off-axis-illumination through phase-shift masks. Even if a “next-generation” lithography (NGL) technology were proven cost-effective in manufacturing— perhaps EbDW for guidelines combined with DSA for feature fill and EUV for trim—we still must control individual atoms.

We may have confidence in shrinking to 62nm pitch for a 4x increase in density. We may even be optimistic that we can shrink further to a 41nm pitch for a ~10x increase in density…but that’s nearing the atomic limits of variability. There are many hypothesized nanoscale devices which could succeed silicon CMOS in IC, but one commonality of all devices is that they will have to be electrically connected. Therefore, we can simplify our consideration of the atomic limits of device scaling by focusing on the smallest possible interconnect.

4nmPitchDevice_TheorySo what is the smallest possible electrical interconnect? So far it would be a Single-Walled Carbon NanoTube (SWCNT) doped with metals to be conducting. The minimum diameter of a SWCNT happens to be 0.4nm, but that was found inside another CNT and the minimum repeatable diameter for a stand-alone SWCNT is ~1nm. So if we need three contacts to a device then the smallest device we can build with atoms would be a 3nm diameter quantum dot. As shown in the figure at right, if we examine a plan-view of such a device we can just fit three 1nm diameter contacts within the area.

Our magical device will have to be electrically isolated and so some manner of dielectric will be needed with some minimal number of atoms. Atomic Layer Deposition (ALD) of alumina has been proven in very tight geometries, and 3 atomic layers of alumina takes up ~1nm so we can assume that spacing between devices. A rectangular array would then result in ~16nm2 as the smallest possible 3-terminal device that can be built on the surface of planet Earth.

Note that a SWCNT of ~1 nm diameter theoretically could carry ~25 microAmps across an estimated 5kOhm internal resistance [(ECS Transactions, 3 (2) 441-448 (2006)]. I will leave it to someone with a stronger device physics background to comment as to the suitability of such contacts for useful circuitry. However, from a manufacturing perspective, to ensure electrical contacts to billions of nanoscale devices we generally use redundant structures, and doubling the number of SWCNT contacts to a 3-terminal device would call for ~8 nm pitch.

However, before we reach the 4-8nm pitch theoretical limits of device scaling, we will reach relative economic limits of scaling just one device feature such as a transistor gate. Recall that there are just 22 silicon atoms (assuming silicon crystal lattice spacing of ~0.3nm) across a ~7nm line, and every atom counts in controlling device parameters. Imec’s Aaron Thean recently provided an excellent overview of scaled finFET technologies, and though the work does not look at packing density we can draw some general trends. If we assume 41nm pitch and double fins with 20nm gate length then each device would use ~1,600 nm2.

Where are we now? Let us consider traditional 6-transistor (6T) SRAM cells built using “22nm node” logic process flows to have minimal area of ~100,000 nm2 or ~16,000 nm2 per transistor. At IEDM2013 (9.1), TSMC announced a “16nm node” 6T SRAM with ~70,000 nm2 area or ~10,000 nm2 per transistor.

IBM recently announced that 6 parallel 30nm long SWCNT spaced 8nm apart will be developed as transistors for ICs by the year 2020. Such an array would use up ~1440 nm2 of area. Again, this is at best another 10x in density compared to today’s “22nm node” ICs.

Imec held another Technology Forum at SEMICON/West this year, in which Wilfried Vandervorst presented an overview of innovations in metrology needed to continue shrinking device dimensions. His work with Scanning Spreading Resistance Microscopy (SSRM) is extraordinary, showing ability to resolve 1-2nm conductivity variations in memory cell material. Working with Resistive RAM (ReRAM) material using a 2nm diameter probe tip as the top contact, researchers were able to show switching of the material only underneath the contact…thus proving that a stable ReRAM cell can be made with that diameter. If we use cross-bar architectures of that material we’d be at a 4nm pitch for memory, coincidentally the same pitch needed for the densest array of 3-terminal logic components.

IC SCALING LIMITATION

Pitch / “Node”

Transistor nm2

Scale from 22nm

193nm lithography double-patterning

124nm / “22nm”

16000

1

Atomic variability (economics)

41nm / “7nm”

1600

10

Perfect atoms (physics)

4nm

16

1000

The refreshing aspect of this interconnect analysis is that it just doesn’t matter what magical switch you imagine replacing CMOS. No matter whether you imagine quantum-dots or molecular memories as circuit elements, you have to somehow connect them together.

Note also that moving to 3D IC designs does not fundamentally change the economic limits of scaling, nor does it alter the interconnect challenge. 3D ICs will certainly allow for greater number of devices to be packed into a given volume, so mobile applications will likely continue to pull for 3D integration. However, the cost/transistor is limited by 2D process technologies that have evolved over 60 years to provide maximum efficiency. Stacking IC layers will allow for faster and smaller devices, though generally only with greater costs.

Atoms don’t scale.

Past posts in the blog series:

Moore’s Law is Dead - (Part 1) What defines the end, and

Moore’s Law is Dead - (Part 2) When we reach economic limits.

The final post in this blog series (but not the blog) will discuss:

Moore’s Law is Dead - (Part 4) Why we say long live “Moore’s Law”!

E.K.

Moore’s Law is Dead - (Part 2) When?

…economics of lithography slow scaling.

Moore’s Law had been on life support ever since the industry started needing Double-Patterning (DP) at 1/4-pitch of 193nm optical lithography. EUV lithography shows slow and steady progress in source and resist technologies, and ASML folks tell me that they now have a pellicle to protect the reflective masks, yet it remains in R&D. All other lithographic technologies under consideration—e-beam direct write, nano-imprint, directed self-assembly—can help with patterning certain layers for certain chips, but lack the broad applicability and economic advantages of 193nm.

At this year’s SPIE Advanced Lithography event, renowned lithographer and gentleman scientist Chris Mack led an extended toast (https://www.youtube.com/watch?v=IBrEx-FINEI) that ended with, “Moore’s Law is over, long live Moore’s Law.” While Wednesday, February 26, 2014 may seem like a rather arbitrary moment, we seem to have the informal consensus of the world’s leading lithographers.

The 4th blog in this series will discuss the “Why” of Moore’s Law continuing as a marketing term…with each company in the industry using the term as well as “More than Moore” to mean slightly different technology advances. Henceforth, “Moore’s Law” may mean that the next IC will be smaller, or faster, or cheaper…but we are past the era when new chips will be simultaneously smaller and faster and cheaper.

ScalingTrends_2003-2015_32nmThe adjacent figure from SEMI shows the rate of scaling since we hit 90nm half-pitch…the last time that the term “node” directly correlated to the lithographic half-pitch. The clear inflection-point at the “32nm node” (which was really 45nm half-pitch) was the moment that DP was needed for patterning critical layers. In a panel discussion at the 2014 imec Technology Forum in San Francisco during SEMICON/West, John Chen, vice president of technology and foundry management, NVIDIA clearly declared, “Double-patterning is a technological and economic discontinuity.”

I should note that, as the EUV developer for the world, ASML strongly feels that the technology will enable future cost-effective scaling.

Meanwhile, 193nm lithography currently provides the economic limits to scaling, so we can easily understand recent and future phases of the industry in terms of fractions of this wavelength:

½ of 193nm = 90nm half-pitch as the end of simple scaling,

¼ of 193nm = 45nm half-pitch (~32nm “node”) begins Double Patterning,

1/8 of 193nm = 22nm half-pitch begins Quadruple Patterning, and

1/16th of 193nm = 11nm half-pitch which would need Octuple Patterning.

Note that the half-pitch limits shown above are approximations, and the lithography community has been using every trick in the book to lower the resolution limit of 193nm lithography. Water immersion for higher-NA, ‘inverse lithography’ to optimize phase-shifting masks, and off-axis illumination have all been deployed to allow 45nm half-pitch patterning.

Quartz lenses become opaque below 193nm, and thereby limit use of any lower wavelengths. Thus, 193nm has become an economic limit on affordable IC production, just as 1234 km/h has been proven as the economic limit on commercial aircraft speed. The “Concorde analogy” explains that physical world constraints combine with economics to create real limits on exponential progress.

Since the air-travel industry hit the economic limit of the speed-of-sound, air-travel innovation has continued but not in raw speed. Quiet airplane cabins and huge improvement in in-flight entertainment and food, when combined with refreshments and entertainment in airports improves the overall experience. Wireless computer networks on airplanes and in airports allow travelers with mobile computers (including smart-phones and tablets) to work and play throughout the travel day.

Innovation in the semiconductor industry will certainly continue after we can no longer afford to shrink digital switches. We already have billions of logic elements with which to form circuitry, and we can combine logic with embedded-memory and with sensors and actuators into 3D nanoscale systems. We can do this today. The truth is, when we run out of room at the 2D bottom we have plenty of room to play at the 3D top…remembering that the cost of chip stacking is set by 2D processing economics.

Past post in the blog series:

Moore’s Law is Dead - (Part 1) What defines the end.

Imminent posts in this blog series will discuss:

Moore’s Law is Dead - (Part 3) Where we reach atomic limits,

Moore’s Law is Dead - (Part 4) Why we say long live “Moore’s Law”!

E.K.