2015 IEDM Slide 11: RF CMOS Circuits on Flexible, Application-Specific Substrates

11. RF CMOS Circuits on Flexible, Application-Specific Substrates
Category: Physically Flexible Electronics
Paper 15.7 - Application-Oriented Performance of RF CMOS Technologies on Flexible Substrates; Justine Philippe et al, IEMN/STMicroelectronics/CEA LETI Minatec

Click image for full-size view.

Click image for full-size view.

Although physically flexible circuitry would enable innovative wearable, biomedical, security and other products, flexible circuits so far have demonstrated only limited performance. That’s because high-performance CMOS devices are fabricated using harsh high-temperature processes that damage most flexible materials. A team led by France’s Institut d’Electronique de Microélectronique et de Nanotechnologie, though, has developed what they call an ultimate thinning and transfer-bonding (UTTB) process which they used to build radio-frequency CMOS circuits on a variety of flexible substrates: polyimide plastic film, glass, and stainless steel. First they built RF CMOS circuits on an SOI substrate, then they thinned it to 30µm by completely removing the backside. The circuits were then transferred to the various substrates using a laminating process. For plastic and glass substrates, the circuitry was attached by laminating it using a dry polymer film and rollers. For stainless steel substrates, a 400nm–thick indium layer was first deposited, and then the circuits were laminated to it in a similar manner. The small-signal performance of these devices wasn’t significantly degraded from what it had been on the original substrate, and unwanted harmonics were actually reduced. The researchers say their UTTB technique can be adapted to meet application-specific requirements for ultra-mechanical flexibility, heat dissipation and transparency.

HOME [1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12] [13] [14] [15] [16] [17] [18] [19] NEXT


Easily post a comment below using your Linkedin, Twitter, Google or Facebook account. Comments won't automatically be posted to your social media accounts unless you select to share.

Leave a Reply

Your email address will not be published. Required fields are marked *

You may use these HTML tags and attributes: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <s> <strike> <strong>



Novel Wafer Analyzer for up to 300mm wafer using high speed Raman Imaging Technology
08/08/2016Nanophoton introduces RAMANdrive - a new Wafer Analyzer - for a wide range of applications at semiconductor market a...
Pfeiffer Vacuum introduces HiPace 2800 turbopump for ion implantation applications
07/06/2016Pfeiffer Vacuum has introduced the HiPace 2800 IT turbopump that is designed for ion implantation applications....
NanoFocus AG introduces new inspection system for semiconductors industry
05/31/2016NanoFocus AG, the developer and manufacturer of optical 3D surface measuring technology, introduces the new measuring system µ...